
Learning to Cluster using Local Neighborhood Structure

Rómer Rosales∗+ romer@csail.mit.edu

Kannan Achan∗ kannan@psi.toronto.edu

Brendan Frey∗
frey@psi.toronto.edu

∗Probabilistic and Statistical Inference Laboratory, University of Toronto, Toronto, ON M5S 3G4, CANADA
+Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

Abstract

This paper introduces an approach for clus-
tering/classification which is based on the use
of local, high-order structure present in the
data. For some problems, this local struc-
ture might be more relevant for classification
than other measures of point similarity used
by popular unsupervised and semi-supervised
clustering methods. Under this approach,
changes in the class label are associated to
changes in the local properties of the data.
Using this idea, we also pursue to learn how
to cluster given examples of clustered data
(including from different datasets). We make
these concepts formal by presenting a proba-
bility model that captures their fundamentals
and show that in this setting, learning to clus-
ter is a well defined and tractable task. Based
on probabilistic inference methods, we then
present an algorithm for computing the pos-
terior probability distribution of class labels
for each data point. Experiments in the do-
main of spatial grouping and functional gene
classification are used to illustrate and test
these concepts.

1. Introduction and Related Work

A fundamental problem in data analysis is that of
clustering/classification with partly or only unlabeled
data. This is known as semi-supervised or unsuper-
vised classification respectively. Here, we will refer to
clustering or classification as the problem of assigning
a class label to (unlabeled) points in a dataset. Some
well studied type of approaches for this task consider
(sometimes implicitly) the information provided by the
underlying global structure of the dataset.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Dataset

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Training Data

(a)(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Inferred Labels

(c)

Figure 1. Illustration of the basic clustering/classification
idea introduced. In the dataset in (a) the properties of
the high-order local structure of the data are relevant for
classification. A training set is provided (b) that allows us
to learn how to cluster (and avoid the ill-defined concept of
unsupervised classification) and produce the results in (c).
Classes are shown as ◦ and +, uncertain labels are shown
as a ∗ (blue, red, and cyan respectively if color enabled).

In cases where there exists a relevant distance measure
associated to the data coordinate system, pairwise dis-
tances could define a global function of the data (favor-
ing certain properties, such as high intra-cluster or low
inter-cluster similarity), that could be (approximately)
optimized over all class assignments. In the case of un-
supervised classification, a well known approach that
uses this idea is spectral clustering (e.g., (Shi & Malik,
2000; Ng et al., 2002)). Further, if the data is known to
lie in a submanifold of the space, the structure of this
submanifold might be critical for classification since
it may provide a sometimes more meaningful way to

compute pairwise similarities for unsupervised or semi-
supervised classification(Szummer & Jaakkola, 2002;
Belkin & Niyogi, 2004). These concepts are not lim-
ited to clustering and have also been used as the basis
for dimensionality reduction ((Roweis & Saul, 2000;
Tenenbaum et al., 2000)). One way to formalize the
role played by the global data distribution was recently
proposed in the context of semi-supervised learning by
introducing Information Regularization (Corduneanu
& Jaakkola, 2003).

The above provides a rather general viewpoint, but
will serve us to better illustrate the ideas introduced
in this paper. The assumption in the above approaches
was that changes in the class labels should occur in ar-
eas of low data density as opposed to areas of high data
density, where class labels should remain the same. In
this paper, we pursue a somewhat different notion. For
some problems, the higher-order properties of the local
data structure, rather than just its high/low density,
could be the basis to correct classification. Under this
concept, changes in class labels should be associated to
changes in the local structure (also referred as neigh-
borhood structure or local topology) of the dataset.

Global, unsupervised clustering algorithms usually
suffer from the problem that a distance measure or
class dependent pairwise likelihood is set in an ad-hoc
way (e.g., (Shi & Malik, 2000; Ng et al., 2002; Kannan
et al., 2000)). Moreover, in many cases, it is set in-
dependently of the preferred clustering properties for
the problem at hand. Semi-supervised classification
provides a way around this problem by incorporating
some labeled examples. In semi-supervised classifica-
tion, the role of the unlabeled examples is generally
to uncover, somehow, the structure of the data (e.g.,
a low-dimensional manifold) (Szummer & Jaakkola,
2002; Belkin & Niyogi, 2004). In (Meila & Shi, 2001;
Szummer & Jaakkola, 2002) the data points were as-
sociated to a Markov random walk whose transition
matrix was computed locally; as a consequence it im-
plicitly caused the unlabeled data density to play a
major role in defining the pairwise similarity between
points. The underlying assumption in these methods
is that areas of low data density (rather than areas of
high data density) should propitiate changes in clus-
ter/class label. However, this is just one possible as-
sumption on the joint distribution of class labels and
data points.

In some clustering problems, what determines the
point classes might be more related to the high-order
(local) structure of the data. To illustrate this, let
us use the simple example in Fig. 1(a). In general,
most methods would produce a rather objectionable

result for this example. In the case of an unsupervised
clustering task, we might be motivated to cluster the
data into a path of high density and a cloud formed
by sparser noise points (Rosales & Frey, 2003). Of
course, this might be just one subjective answer that
many could agree upon in the absence of more informa-
tion. However, it is useful at illustrating two ideas: (1)
unsupervised clustering is in general ill-defined if we
do not restrict the criteria used to characterize a good
clustering and (2) the local data structure might be
more relevant in order to distinguish clusters in some
type of problems; as a consequence, different measures
could be associated with each class. In this paper we
focus on both of these ideas.

A reasonable approach to better define what we mean
by clustering is to learn to cluster from examples (pre-
viously labeled data), such as that shown in Fig. 1(b).
Different versions of this idea have been tried (Bach &
Jordan, 2004; Xing et al., 2003), and it is in general
a difficult problem. Successful clustering paradigms
often involve a complicated function of the distance
measure and the labels. Popular clustering approaches
such as spectral clustering suffer from the fact that the
problem of learning the distance measure from data,
recently proposed in (Bach & Jordan, 2004), does not
have a straightforward solution. Thus, approximations
are needed even for the parameterized measure used in
that approach. By using the point of view of Markov
random walks, (Meila & Shi, 2001) also provided a
rather elegant approach for learning the measure. In
other contexts, such as the convex problem formulated
by (Xing et al., 2003), learning distance measures is
a less demanding task computationally. However, it
all appears as if for computational tractability, the
form of the measure and the type of objective function
are rather limited. Our formulation provides a sim-
ple and natural way to learn about clusters from pre-
labeled data and produce results such as that shown
in Fig. 1(c). In addition, none of these approaches at-
tempts to learn or use the concept of class dependent
distance measures introduced here.

In order to formalize the above and introduce our
method for learning to cluster by using the local neigh-
borhood structure (LC-LNS), first we define a genera-
tive model of data clustering that uses the local data
structure to define what a cluster should be. We then
explain how we could easily learn from previously la-
beled data using this framework and how to infer the
posterior probability distribution over class labels for
each data point. Finally we experimentally evaluate
the methods and concepts introduced here by means
of two different application domains.

2. Modeling Local Structure

Let Z = {z1, ..., zN} be a set of observed data points
which we would like to classify or cluster into classes or
groups. Each point zi is expected to belong to one of
M classes. We will employ the random variable ci tak-
ing values in the discrete space C = {1, ...,M} to rep-
resent the class associated to data point zi. Our goal
will be to infer the class labels C = (c1, ..., cN) ∈ CN

of all points in Z . We will consider local neighbor-
hoods (groups of points) indexed by some set G. Each
neighborhood α ∈ G will contain a subset of points
from Z whose indices are given by the set ηα, with
ηαj the j-th element of the neighborhood set. Denote
the super set of all neighborhoods η = {ηα|α ∈ G}.
Associated to each local neighborhood α is a random
variable yα that will describe the neighborhood; we let
y = {yα|α ∈ G}. In other words, yα = f({zi}i∈ηα

)
for some function f . Our approach makes use of local
neighborhood descriptions f , which in practice could
be of diverse nature, and thus the domain of y could
vary. For example, yα could encode simple binary re-
lationships between data points in the neighborhood
α (i.e., f(.) = {fij} for all pairs (i, j) of elements in
any given neighborhood).

Since we consider the problem of classification, a
neighborhood α will be assigned the random variable
xα to describe its class. A particular aspect of this
approach is the use of local high order descriptions of
the data. In the extreme case, one neighborhood could
be potentially formed by elements from the M differ-
ent classes. Given our definition of C, in this extreme
case the domain of xα would be the Cartesian product
space CK , where K is the neighborhood size. However,
it is sensible to assume that most (e.g., more than half)
elements in a local neighborhood belong to a single
common class, we will use Kin < K to denote this (in-
class) number. This is a reasonable assumption since it
is equivalent to expecting that when a local neighbor-
hood is chosen at random, most of the elements will
belong to one particular (but unknown) class. Still,
even under this representation, the number of ways
to form a neighborhood by assigning a class to each
point could be large. In this paper, we consider a local
neighborhood representation where Kin points belong
to a common class, and the rest (Kout = K − Kin)
may be out of this common class.

Let S denote the domain of xα. Using the represen-
tation above, S will have cardinality M

(

K
Kout

)

. This
is, from K elements, choose any Kout elements to be
considered not part of the common class. We will call
this common class, the neighborhood class, with the
caveat that sometimes not all the elements in a neigh-

α β

Figure 2. Two full neighborhoods and part of several oth-
ers. The elements in each neighborhood are in the sets ηα

and ηβ respectively. The function f computes a description
of the full neighborhood using its elements. The potentials
ψ are a function of the points in overlapping areas. In this
example α and β have different neighborhood structure.

borhood belong to this class. It is natural to define
xα = (`α, sα), with `α ∈ C representing the neighbor-
hood class and sα encoding the choice of in-class and
out-of-class elements. We will use sα = (sα1, ..., sαK),
with sαi ∈ {0, 1} denoting if its i − th element is in
the neighborhood class (1) or not (0). Finally, denote
η1

α(sα) = {k|k = ηαj and sαj
= 1} (i.e., simply put,

the set of indices of the points zi that are in-class),
likewise for η0

α.

2.0.1. Example

Let K = 5 and Kout = 2, then sα = (0, 1, 1, 0, 1) is a
valid state. Moreover, it denotes that as far as the ran-
dom variable xα is concerned, from the five elements in
α, the second, third, and fifth elements belong to class
`α, the first and fourth ones may not belong to class `α
but potentially to another class (they are wild-cards).
In Sec. 3.1 it will be clear the role played by K and
Kout in the trade off between algorithmic complexity
and modeling power.

This representation allows us to define the conditional
probability of a neighborhood description given its
class in a simple form. In particular, we consider class-
conditional mixture distributions of the form:

p(yα|xα) =
∑

ω

p(ω|`α)p(yα|xα, ω), (1)

with ω as the index for the mixture component. Of
particular interest will be:

p(yα|sα, ω) = N (yα(sα);µ`αω,Σ`αω), (2)

with ω ∈ {1, ..., T}, T the desired number of mix-
ture components, and yα(sα) = f({zi}i∈η1

α(sα)) (f(.)
is computed using only the neighborhood elements zi

for which sαi = 1). This is a class-conditional Gaus-
sian mixture defined on the range of f ; thus the sub-
scripts (lα, ω) are simply the class and mixture indices
for the mean and covariance.

yα

xα

xβ

yβ

cj clci ck cm

ξαj ξαl ξβm

ψαβ

p(yα|xα)
p(yβ|xβ)

… … …

Figure 3. Example factor graph generated for a specific
neighborhood instance. For simplicity we have ignored the
class-dependent mixture random variables ωαi.

So far, we have emphasized the use of attributes of
local neighborhoods to characterize local structure.
However, the larger the neighborhood the more com-
plex its structure can potentially become. At a large
enough scale, computational modeling can become in-
feasible. Generally speaking, some datasets may re-
quire a very complex model; however here we define a
simple large scale model which is valid for our cluster-
ing approach and whose complexity is manageable. We
choose to let multiple neighborhoods share elements;
we can thus enforce large scale consistency simply by
noticing that the class of a given point should agree
among all the neighborhoods to which the point be-
longs. This is a fairly general statement and simple to
specify formally.

We shall use a neighborhood-based Markov model,
where two neighborhoods are probabilistically related
if they share at least one element (in this case we say
that the neighborhoods are proximal). Specifically, if
xα and xβ are two proximal neighborhoods:

ψ(xα,xβ) ∝ exp{−
∑

(i,j)∈Pαβ

φ(sαi, sβj)}
δ(`α 6=`β), (3)

where P indexes common element pairs, and δ(.) is the
indicator function (see Fig. 2). We let φ(1, 1) = 1 and
zero otherwise (as in the logical AND); thus, if two
proximal neighborhoods have a different class, their
compatibility decreases with the number of times their
common elements disagree (variations on this could
also be of interest). Note that using this definition,
same-class neighborhoods pairs are equally compati-
ble, independently of the number of shared elements.

2.1. Learning Neighborhood Structure

One of the advantages of this setting is that learning
to cluster from labeled data can be easily defined since
we only need to learn class-dependent neighborhood

distributions1. Let us for the moment assume that,
besides the unlabeled dataset Z , we were given one
or more labeled datasets Li, consisting of data points
and their corresponding labels. We can formulate the
learning problem as that of estimating class-dependent
local neighborhood structure. This is possible for a
number of distributions p(y|x), including distributions
of the form in Eq. 1(e.g., using the EM algorithm).

Given a set of neighborhoods ηi = {ηi
1, ..., η

(i)
Li
}, for

each labeled dataset i, we fit the corresponding distri-
bution using a maximum likelihood approach, assum-
ing that neighborhoods and datasets where drawn in-
dependently at random. Using this criterion, the goal
is to maximize:

p(L; θ) =
∏

i=1

Li
∏

α=1

∏

c

p(yi
α; θc), (4)

for each class c with parameters θc. From Eq. 2, θc =
(µcω,Σcω, p(ω|c)) for each ω. Eq. 4 factorizes across
neighborhoods and classes; thus, learning becomes a
simple task. Note that the neighborhood structure
distributions are defined in a Kin dimensional space
since `α is given (i.e., the data is labeled).

3. Inferring the Clusters

We should remark that xα defines the state of the
neighborhood α as a whole. So far no explicit con-
cept has been associated to the class of individual data
points C = (c1, ..., cN), since the different neighbor-
hoods that a point may belong to could have different
classes. In order to make the class concept explicit, we
define the potential ξ as follows:

ξ(ci,xα) =

{

1 if ci = `α
0 otherwise;

(5)

this potential is incorporated in the model only if data
point i is in the neighborhood α. The full joint prob-
ability over all the states and classes in the neighbor-
hoods is then given by:

P (y,x, C) =
1

Z

∏

α

p(yα|xα)
∏

(α,β)∈proxim.

ψ(xα,xβ)

∏

(α,i)

ξ(ci,xα) (6)

A factor graph depicting the relationships between the
defined random variables is shown in Fig. 3. A reason
for formalizing our model using a factor graph is that
complexity analysis and general algorithms for infer-
ence can be easily derived from it.

1Intra class dependencies could also be studied, but this
is not considered in this paper.

3.1. Complexity Analysis and Inferring

Neighborhoods

As we have seen above, xα is a discrete random vari-
able, defining the state of a neighborhood α. It
takes values in the set S, with |S| = M

(

K
Kout

)

<

MKmin(Kin,Kout). If we do not allow elements with-
out a class (i.e., Kout = 0), then the representation
for xα reduces to a more common representation (we
can think of the neighborhood in a similar way as we
would think of a single point). Using the neighbor-
hood idea, this would mean that all the elements in
the neighborhood are assumed to belong to a single
class (i.e., |S| = C). However, this assumption is too
restrictive since the final clustering assignment would
be constrained to agree with the subdivision (neigh-
borhoods) given by η.

An ideal approach would be to let the neighborhood
definitions unknown and try to discover them. This
is a very complicated combinatorial problem by itself.
However, our approach is designed with this issue in
mind, and is thus geared towards solving this particu-
lar problem, but with some constraints on the neigh-
borhoods η allowed.

Specification of the neighborhood is done (implicitly)
using our representation. Since the elements i in the
neighborhood for which sαi = 0 are not modeled by
p(yα|xα), it is as if the neighborhoods were non-static
and specified by the sα itself; xα = (sα, `α) is indeed
a representation for neighborhood element ownership
and class label. Thus, neighborhoods of the type rep-
resented by sα can be accounted for during inference.

3.2. Algorithms for inference

Here our goal is to find a posterior distribution p(ci|y)
for each point index i. This is a well studied prob-
lem once the joint probability distribution has been
specified. However, for the distribution specified in
Eq. 6, there is no known exact algorithm for efficiently
computing the desired posteriors. We will resort to
the sum-product algorithm (Pearl, 1988; Kschischang
et al., 2001), which is not exact in the factor graph
associated to Eq. 6 (due to loops introduced by the
dependencies), but has been shown to perform sur-
prisingly well in such graphs (e.g., (McEliece et al.,
1998)). Also, empirically it has been found to perform
well in models with a large number of hard constraints.

The sum-product algorithm is a message passing
method that computes local updates on the marginal
posterior probabilities based on local dependencies be-
tween variables. The sum-product update equations
are equivalent to iteratively solving self-consistent

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Training Data

(a) −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dataset

(b)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Labels according to class cond. distributions

(c) −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Inferred Labels

(d)

Figure 5. Illustration that the class likelihood alone is not
enough for inference, thus the information across neighbor-
hoods is needed. (a) shows the example dataset, (b) shows
the problem at hand, (c) shows inference using the class
likelihoods alone, and (d) shows full inference.

equations resulting from finding the zero-gradient
points of the Bethe approximation to the Gibbs free
energy associated to the joint probability in Eq. 6
(Yedidia et al., 2000).

In our particular implementation, we randomly choose
the neighborhoods. This initial step defines the factor
graph to be used. We use the defined class-conditional
probabilities to compute messages to each variable xα.
The posterior probabilities for xα are initialized ac-
cording to this likelihood, then a parallel version of the
sum-product algorithm is used to update the poste-
rior distributions in the subgraph associated to the xα

variables. The marginal posterior distributions for the
classes ci are then computed by marginalizing with re-
spect to the states and multiplying appropriately (also
equivalent to sum-product messages).

4. Experimental Results

To evaluate these concepts and algorithms, we em-
ployed datasets where local structure seems relevant
for classification: visual/spatial clustering, sampled-
manifold uncovering, and gene function prediction.

4.1. Learning Spatial Clustering and

Uncovering Sampled Manifolds

In this set of tests we used synthetic spatial data in
two dimensions. The scaling properties of the algo-
rithms do not depend on the dimensionality of the el-
ements in the dataset; we have used two dimensions

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dataset

(a) −1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Training Data

(b) −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Inferred Labels

(c)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dataset

(a) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Training Data

(b) −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Inferred Labels

(c)

Figure 4. Two of the toy datasets used for our tests. Input datasets (a), datasets used for learning to cluster (b), and
inferred labels (c). In each graph, class labels are color and symbol coded. A cyan ∗ denotes a high entropy posterior for
the particular point (low confidence).

−5

0

5

−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6

(a) −5

0

5

−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6

(b) −5

0

5

−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6

(c)

2
4

6
8

10
12

14
2

4

6

8

2

3

4

5

6

7

(d) −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(e) −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(f)

Figure 6. Uncovering sampled manifolds hidden in noise. Input Swiss-Roll sampled manifold + noise (a), inferred clas-
sification (b), ground-truth (c), training data for both Swiss-Roll and S-Manifold (d), S-Manifold inferred classification,
S-Manifold ground-truth.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 e
rr

or
 in

 g
en

e
cl

as
s

po
st

er
io

r

Number of GO−BP Categories

Average gene classification error (LC−LNS)

γ=0.6
γ=0.5
γ=0.4
γ=0.3
γ=0.2

(a)
0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 e
rr

or
 in

 g
en

e
cl

as
s

po
st

er
io

r

Number of GO−BP Categories

Average gene classification error (K−means)

γ=0.6
γ=0.5
γ=0.4
γ=0.3
γ=0.2

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

M
ea

n

Overall average gene classification error

LC−LNS
KNN

0 20 40 60 80 100
0.02

0.03

0.04

0.05

0.06

Number of GO−BP Categories

S
td

.

Overall std. of gene classification error

LC−LNS
KNN

(c)

Figure 7. Gene classification results for (a) LC-LNS (our method), (b) KNN classifier for different decision proportions
γ shown in decreasing order starting at the top curve (and in color if available), and (c) for overall error and standard
deviation across experiments. The graphs show the sorted (not the cumulative) error values across GO-BP categories.

to ease visualization. We set K = 10, Kout = 3, and
f : <K → <D to be the collection of pairwise (Eu-
clidean) distances between the elements in the neigh-
borhood; thus D = K(K− 1)/2 (f provides a descrip-
tion of the neighborhood structure as a vector in <D).
We sorted the vector components to make the repre-
sentation invariant to ordering and normalized them to
achieve local scale invariance. We chose the neighbor-
hoods to be centered at random point locations and to
be defined by the K nearest neighbors. The number of
neighborhoods was set to 60% of the number of data
points. For learning, the class conditional neighbor-
hood distributions were set as Eq. 2 with T = 3. The
algorithm does not require any further parameter set-
ting since the rest can be learned from data. Several
datasets are shown in Figs. 1,4, and 5.

Using the same settings, we applied the algorithm to
sampled versions of well-known test manifolds hidden
in higher dimensional noise. Fig. 6 shows a couple of
example experiments. The results are of good-quality
even in noticeably complex patterns considering the
combinatorial nature of the task. These examples il-
lustrates potential use of this method in data visual-
ization as well.

4.2. Functional Gene Classification

In our next set of experiments our goal is to correctly
classify gene function based on gene expression data.
We used mouse gene expression data obtained under
a series of different (55) experimental conditions. The
genes in this dataset were determined using GenomeS-
can, generating a set of 41K putative gene sequences
which were used to produce DNA microarrays contain-
ing 60-mer oligonucleotides (see (Zhang et al., 2004)).
We used Gene Ontology Biological Process (GO-BP)
annotations (Ashburner et al., 2000), which defined a
gene classification criterion (related to gene function).
We set K = 8; Kout, f , T , and the number of neigh-

borhoods were as in the previous experiment.

Our reason to believe that the classification concepts
here presented are at all useful in this scenario is re-
lated to the possibility that gene function could be pre-
dicted by the pattern of gene expression in which they
are involved and that this pattern might be shared
by same-function genes. Thus, different classes might
(presumably) be distinguished by their collective pat-
terns of gene expression.

We considered 99 GO-BP categories, those for which
the number of labeled genes was at least 80 (for sta-
tistical significance) and those which did not contain
a high number of labeled genes (because those are too
broad in function). We randomly partitioned each cat-
egory into two sets of genes, 80% for training and the
rest for testing, and built binary classifiers using the
method described in this paper. The error was mea-
sured using the mean absolute difference between the
inferred posterior probability for the class label found
by our method and the (1/0) probability derived from
ground-truth. This experiment was repeated a number
of times (10). Since we were faced with the question
regarding when a gene function should be predicted, we
set our algorithms to make decisions about the class
of at least a γ proportion of the (unlabeled) genes ob-
served. This was done by choosing to classify the genes
with highest confidence (posterior probability).

Figs. 7(a)-(b) show classification results for our
method (LC-LNS) and a K-nearest neighbor classifier
(KNN) respectively. In addition to LC-LNS being su-
perior overall, the methods had very distinct perfor-
mance properties. LC-LNS performed really well in
many classes (classes whose genes could be uncovered
by considering their collective expression pattern) and
really badly in few classes (presumably those which
could not), whereas KNN performance was relatively
even across classes but not excellent for any of them.
Fig. 7(c) summarizes the overall performance across

experiments and γ values, showing a lower standard
deviation on the prediction error overall for LC-LNS.
These experiments suggest that the expression pat-
tern of groups of genes (rather than only the similarity
in gene expression) is important for correct functional
gene classification for some categories. Further, it is
worth pointing out that LC-LNS is more general, since
we could potentially perform gene classification across
species by learning the function patterns in one species
to classify genes, by the same functions, in another.

5. Discussion and Future Work

In this paper, we have introduced a general classifica-
tion concept driven by the idea that, in some prob-
lems, high-order local structure of the data could be
relevant for classification. Under this concept, changes
in class label are associated to changes in local data
structure. Many successful unsupervised and semi-
supervised classification methods are (implicitly or ex-
plicitly) built upon the idea that changes in class labels
should occur in areas of low data density. From this
viewpoint, this work establishes a connection between
these two type of approaches.

We presented a fully probabilistic model based on this
classification idea and derived a simple and natural
criterion for learning to cluster. The proposed method
also gave us the freedom to account for class depen-
dent cluster properties, unlike previous methods which
have used a global distance measure (not class spe-
cific). Based on results from probabilistic inference,
we used the sum-product algorithm for computing the
posterior distributions of class labels.

There are several extensions and ideas that we be-
lieve are worth pursuing: (1) For certain problems
it might be relevant to learn the inter-class neighbor-
hood structure rather than just the within-class struc-
ture, (2) A more interesting definition of ψ could be
one that allows the preservation of the neighborhood
structure itself. Interesting further applications of this
method include problems related to inferring graphs
(e.g., graph denoising and related areas). The con-
cepts presented here extrapolate almost naturally to
graphs, since neighborhood structure could be seen as
graph connectivity structure.

Acknowledgments

We thank Quaid Morris for providing valuable remarks
regarding our experiments using GO-BP categories
and for making the gene data available to us. We also
thank our reviewers for their helpful comments.

References

Ashburner, M. et al. (2000). Gene ontology: tool for
the unification of biology. The gene ontology consor-
tium. Nat. Genet., 25, 25–29.

Bach, F. R., & Jordan, M. I. (2004). Learning spectral
clustering. Neural Inf. Processing Systems.

Belkin, M., & Niyogi, P. (2004). Semi-supervised
learning on Riemannian manifolds. Journal of Ma-
chine Learning Research (to appear).

Corduneanu, A., & Jaakkola, T. (2003). On informa-
tion regularization. Uncert. in Artificial Intelligence.

Kannan, R., Vempala, S., & Vetta, A. (2000). On clus-
terings: good, bad and spectral. 41st Foundations
of Computer Science (FOCS 00).

Kschischang, F., Frey, B., & Loeliger, H. (2001). Fac-
tor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory.

McEliece, R., MacKay, D., & Cheng, J. (1998). Turbo
decoding as an instance of pearl’s belief propagation
algorithm. IEEE J. Sel. Areas in Comm., 16.

Meila, M., & Shi, J. (2001). Learning segmentation
with random walks. Neural Inf. Processing Systems.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral
clustering: Analysis and an algorithm. Advances in
Neural Inf. Processing Systems.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems. Morgan-Kaufman.

Rosales, R., & Frey, B. (2003). Generative models of
affinity matrices. Uncert. in Artificial Intelligence.

Roweis, S., & Saul, L. (2000). Nonlinear dimensional-
ity reduction by locally linear embedding. Science,
290, 2323–2326.

Shi, J., & Malik, J. (2000). Normalized cuts and im-
age segmentation. Pattern Analysis and Machine
Intelligence, 22, 888–905.

Szummer, M., & Jaakkola, T. (2002). Partially labeled
classification with markov random walks. Neural
Inf. Processing Systems.

Tenenbaum, J., Silva, V. D., & Langford, J. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290.

Xing, E., Ng, A., Jordan, M., & Russell, S. (2003).
Distance metric learning, with application to clus-
tering with side-information. Neural Inf. Processing
Systems.

Yedidia, J., Freeman, W., & Weiss, Y. (2000). Gen-
eralized belief propagation. Neural Inf. Processing
Systems (pp. 689–695).

Zhang, W. et al. (2004). The functional landscape of
mouse gene expression. Submitted.

