

Fast Optimization Methods for L<sub>1</sub> Regularization: A Comparative Study and Two New Approaches

> Mark Schmidt<sup>1</sup>, Glenn Fung<sup>2</sup>, Rómer Rosales<sup>2</sup> <sup>1</sup>University of British Columbia, BC, Canada <sup>2</sup>IKM CKS, Siemens Medical Solutions, PA, USA







## **Overview**

- Motivation
- Comparative Study
  - Subgradient strategies
  - Unconstrained approximations
  - Constrained formulations
- New Approaches
  - Differentiable convex approximation for L1 norm
  - Constrained optimization and two-metric projection
- Experimental Results
- Discussion



# **Motivation**

 L<sub>1</sub> norm appears in various important machine learning problems

- Finding optimal subset of features for a linear classifier is NP-hard (~L<sub>0</sub> norm).
  - # nonzero components of normal to hyper-plane classifier = # features it needs to employ.
- Model selection in graphical models
  - MDL/BIC
- L<sub>1</sub> norm is a reasonable convex approximation for the L<sub>0</sub> norm
- Logarithmic sample complexity bounds [Ng04]

(~number of data points relative to data dimensionality)

# L<sub>1</sub> regularization. General problem

We address optimization problems of the form:

$$\min_{x} f(x) \equiv L(x) + \lambda ||x||_{1}$$

- L(x) : loss function (Logistic Regression, CRF,...)
   λ||x||<sub>1</sub>: penalty on size of coefficients
- Properties of L<sub>1</sub>-penalty:
  - Simultaneous Regularization and Variable Selection ③
  - Logarithmic sample complexity with irrelevant variables ③
  - Convex ③
  - Non-differentiable ⊗

## **Overview of contributions**

- Many approaches proposed to solve optimization problem for specific loss functions
- We consider the more general case where the loss function is continuous and twice-differentiable
- We give generalizations of some existing approaches, and outline 2 new approaches:
  - SmoothL1
  - ProjectionL1
- Our results indicate (consistently across datasets/loss functions)
  - Competitive with s-o-a (iterations for convergence)
  - Much more efficient (per iteration)



# 1 Subgradient strategies

Image and Knowledge Management CKS /US/MED



### **Subgradients**

- Let  $f(x): \mathcal{X} \rightarrow \mathbb{R}$  be a convex function
- Subderivative at point *x*: any real number *c* in
   [*a*,*b*]
  - a, b: one-sided derivatives at x
- Example f(x) = |x|



# Subgradient strategies for L1 regularization

- Gradient of f(x): is not defined for x = 0
- First order optimality conditions at local minimizer  $\bar{x}$

$$\begin{cases} \nabla_i L(\bar{x}) + \lambda \operatorname{sign}(\bar{x}_i) = 0, & |\bar{x}_i| > 0\\ |\nabla_i L(\bar{x})| \le \lambda, & \bar{x}_i = 0 \end{cases}$$

# Subgradient strategies

- Solve iteratively: a few variables at a time
- Working set: variables that are free to change in iteration (optimization problem)
- Summary

| Approach                            | <b>{GaussSeidel}</b><br>[Shevade-<br>Keerthi03] | <b>{Grafting}</b><br>[Perkins03]          | <mark>{Shooting}</mark><br>[Fu98] | Gen. {SubGrad}                |
|-------------------------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------|
| Working set                         | У                                               | У                                         | n                                 | У                             |
| Working (wk) set inclusion criteria | $x_i$ w/largest sugradient (1)                  | <i>x<sub>i</sub></i> w/largest sugradient | n/a                               | $x_i$ st satisf. optim. cond. |
| #var optim prob.                    | 1                                               | all in wk set                             | 1 (cycle thru)                    | all in wk set                 |
| Step Method                         | 1D line search                                  | Newton                                    | 1D line search                    | Newton                        |

![](_page_9_Picture_0.jpeg)

# Subgradient strategies

|             | Coordinate-wise | Joint       |
|-------------|-----------------|-------------|
| Incremental | Gauss-Seidel    | Grafting    |
| Full        | Shooting        | Gen SubGrad |

# **Subgradient Methods**

- Main drawbacks of subgradient methods
  - Need special treatment for variables near zero
  - Does not guarantee to provide descent direction (some coordinates)
  - Optimize all variables jointly: slow convergence (does not guarantee descent direction)
  - Optimize coordinate-wise: inefficient
- Instability close to the singularity

![](_page_11_Picture_0.jpeg)

# 2 Unconstrained approximations

Page 12/40

Schmidt, Fung, Rosales

Image and Knowledge Management CKS /US/MED

# **Unconstrained approximations**

- General idea: replace f(x) with approximation g(x) and solve <u>unconstrained</u> problem
  - $\blacksquare$  g(x) continuous and twice-differentiable
  - Solve (e.g., Newton iterations)
- {epsL1} [Lee et al.06] :

$$g(x) = L(x) + \lambda \sum_{i} \sqrt{x_i^2 + \epsilon}$$

Log barrier tunctions:

 $g(x) = L(x) + \lambda ||x||_1 - \mu \log c(x)$ 

• Example {LogNorm}  $c(x) = ||x||_2^2$ 

{SmoothL1\*} ...

## **Unconstrained approximations**

{epsL1}

$$g(x) = L(x) + \lambda \sum_{i} \sqrt{x_i^2 + \epsilon}$$

![](_page_13_Figure_4.jpeg)

Page 14/40

# **Unconstrained approximations**

Log barrier functions:

$$g(x) = L(x) + \lambda ||x||_1 - \mu \log c(x)$$

• Example {LogNorm}  $c(x) = ||x||_2^2$ (Smooth but infinite at 0)

![](_page_14_Figure_5.jpeg)

Page 15/40

Image and Knowledge Management CKS /US/MED

# {SmoothL1\*} approximation

**Define** 
$$(x)_+ = \max(x, 0)$$

![](_page_15_Figure_3.jpeg)

Page 16/40

Image and Knowledge Management CKS /US/MED

# {SmoothL1\*} approximation

**Define**  $f(x) = (x)_{+} = \max(x, 0)$ 

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_0.jpeg)

# **Sigmoid function**

![](_page_17_Figure_2.jpeg)

 $\mathcal{X}$ 

# {SmoothL1\*} approximation

• Let  $(x)_{+} = \max(x, 0)$ 

Basic observation:  $|x| = (x)_+ + (-x)_+$ 

Combining these:

$$\begin{aligned} |x| &= (x)_+ + (-x)_+ \approx p(x,\alpha) + p(-x,\alpha) \\ &= \frac{1}{\alpha} \left[ \log(1 + \exp(-\alpha x)) + \log(1 + \exp(\alpha x)) \right] \\ \stackrel{\text{def}}{=} |x|_\alpha \end{aligned}$$

Page 19/40

Image and Knowledge Management CKS /US/MED

# {SmoothL1\*} approximation

![](_page_19_Figure_2.jpeg)

Page 20/40

Image and Knowledge Management CKS /US/MED

# {SmoothL1\*} approximation

# Implementation details

- Newton steps
- Continuation strategy: increase *alpha* between steps

(in practice *alpha* = 1.5*alpha*)

- General line search methods can be used (advantage over log barrier)
- No doubling of number of variables (as in most constrained formulations)

# **Unconstrained approximations**

EM}-based approach [Figuereido03]

$$x_i | \tau_i \sim N(0, \tau_i)$$
$$p(\tau_i | \sqrt{\lambda}) = \frac{\sqrt{\lambda}}{2} \exp(\frac{-\tau_i \sqrt{\lambda}}{2})$$

- Integrating over  $\tau_i$  yields the Laplacian prior over  $x_i$
- E-Step: compute posterior for  $\tau_i$
- M-Step: update x, loss function is an expectation over \(\tau\) of the L<sub>2</sub> norm (derived from conditional Gaussian prior)

![](_page_22_Picture_0.jpeg)

# 3 Constrained approaches

Page 23/40

Schmidt, Fung, Rosales

Image and Knowledge Management CKS /US/MED

# **Constrained approaches**

Redefine as a constrained optimization problem

$$\min_{x} L(x) \quad s.t.||x||_1 \le t$$

- Special case, L=logistic regression, can be solved by enforcing constraint in IRLS iterations using LARS [Efron et al.03] (Least Angle Regression).
- Not possible in general for other *L*.
- Generalize by redefining IRLS-LARS as {SQP}
  - Solve a quadratic approximation of L, subject to linear constrains
  - Superlinear convergence

# **Constrained Formulations**

{SQP} formulation (generalizes IRLS-LARS)
Let x<sup>+</sup> = max(0,x) x<sup>-</sup> = -min(0,x)

$$\min_{x^+, x^-} L(x^+ - x^-) + \lambda \sum_i [x_i^+ + x_i^-] \quad s.t. \forall_i x_i^+ \ge 0, x_i^- \ge 0$$

 SQP formulation for calculating descent direction

$$\min_{d} \nabla (L(x^{+} - x^{-})^{T} + \lambda 1)^{T} d + \frac{1}{2} d^{T} \nabla^{2} L(x^{+} - x^{-}) d$$
$$s.t. \forall_{i} x_{i}^{+} + d_{i}^{+} \ge 0, x_{i}^{-} + d_{i}^{-} \ge 0$$

![](_page_25_Picture_0.jpeg)

# {ProjectionL1\*}

# Define problem as:

 $\min_{x^+, x^-} L(x^+ - x^-) + \lambda \sum_i [x_i^+ + x_i^-] \quad s.t. \forall_i x_i^+ \ge 0, x_i^- \ge 0$ 

- Observation: non-negative bound constraints.
  - Can be easily handled by Gradient Projection Method
  - Projection into constrain set

$$x^* := [x^* - t\nabla f(x^+ - x^-)]^+$$

Simple projection into non-negative orthant

![](_page_26_Picture_0.jpeg)

# {ProjectionL1\*}

Two-metric projection [Gafni-Bertsekas84]

$$x^* := [x^* - t\nabla^2 f(x^*)^{-1} \nabla f(x^*)]^+$$

- Newton-like scaling
- Superlinear convergence (like SQP)
- Lower iteration cost than SQP
- Not guarantee descent for arbitrary Hessian but guaranteed if optimize for x not in active set

![](_page_27_Picture_0.jpeg)

#### Active set

# Active set of constraints for nonnegative bounds.

# $\{i|x_i^* = 0, \nabla L(x^+ - x^-) + \lambda > 0\}$

# At each step, optimize wrt variables whose bound constraint is non-active

![](_page_28_Picture_0.jpeg)

# Summary

| Optimization             | Approx         | Sub-      | Explicit    |
|--------------------------|----------------|-----------|-------------|
| Method                   | Objective      | Gradient  | Constraints |
| Gauss-Seidel [16]        | N              | Y         | Ν           |
| Shooting [15]            | Ν              | Y         | Ν           |
| Grafting [6]             | Ν              | Y         | Ν           |
| Sub-Gradient             | Ν              | Y         | Ν           |
| epsL1 [11]               | Y              | N         | Ν           |
| Log(norm(x))             | Y              | Ν         | Ν           |
| EM [4]                   | $Y^*$          | $Y^{***}$ | Ν           |
| Log-Barrier [14]         | $Y^*$          | Ν         | Y           |
| SmoothL1 [ThisPaper]     | $\mathbf{Y}^*$ | Ν         | Ν           |
| SQP [11]                 | N              | N         | Y           |
| ProjectionL1 [ThisPaper] | Y              | Y***      | Y           |
| Interior Point [5]       | Y**            | Ν         | Y           |

\* Improve approximations between iterations

\*\* Constrained objective improved over iterations

\*\*\* Correct gradient but only for ws

# **Experimental Results**

# Methods compared

- Gauss-Seidel
- Shooting
- Grafting
- Sub-Gradient
- EpsL1
- Log Barrier
- EM
- Log-Norm
- SmoothL1\*
- SQP
- ProjectionL1\*
- Interior Point

# **Experimental Results**

- Stopping criteria
  - Step Length between iterations < 10<sup>-6</sup>
  - Change in function value between iteration < 10<sup>-6</sup>
  - Negative directional derivative < 10<sup>-6</sup>
- Methods only know f(x) through black box. For given x, f(x) and derivatives
- Convergence measured based on number of black box invocations
- All methods typically found the optimal solution or reached max evaluations allowed (max=250)

## **Experimental evaluation**

- Binary Classification
  - Probit Regression  $L(x) = \log(\phi(\frac{y_i x^T z_i}{\sqrt{2}}))$
  - Smooth SVM  $L(x) = (1 y_i x^T z_i)^+$

Initialized with x=0 (or x=0.01)
Define λ<sub>max</sub> s.t. optimal solution: x=0
Test for λ<sub>max</sub> \* [.1, .3, .5, .7, .9]
12 datasets UCI repository

# **Experimental results (Probit)**

![](_page_32_Figure_2.jpeg)

Distribution of function evaluations (averaged over  $\lambda$ ) across data sets

# Experimental results (~SVM)

![](_page_33_Figure_2.jpeg)

Distribution of function evaluations (averaged over  $\lambda$ ) across data sets

![](_page_34_Picture_0.jpeg)

### **Experimental evaluation**

Multinomial Classification
 Multinomial Log Regression (Soft Max)

11 Datasets UCI Repository + StatLog Project

# Experimental results (SoftMax)

![](_page_35_Figure_2.jpeg)

## **Experimental evaluation**

Structured Classification
 CRF (2D). Pseudo-likelihood
  $l(x, v) = \log(1 + \exp(y_i x^T z_i + \sum_{j \in nei(i)} y_i y_j v^T z_{ij}))$ 

Image Patch classification problem [Kumar-Hebert03]

# **Experimental results (CRF)**

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

# Summary

| Optimization             | Approx         | Sub-      | Explicit    | Convergence | Iteration Speed |
|--------------------------|----------------|-----------|-------------|-------------|-----------------|
| Method                   | Objective      | Gradient  | Constraints | Ranking     | Ranking         |
| Gauss-Seidel [16]        | Ν              | Y         | Ν           | 6           | 1               |
| Shooting [15]            | Ν              | Y         | Ν           | 8           | 1               |
| Grafting [6]             | Ν              | Y         | Ν           | 4           | 2               |
| Sub-Gradient             | Ν              | Y         | Ν           | 9           | 2               |
| epsL1 [11]               | Y              | Ν         | Ν           | 5           | 2               |
| Log(norm(x))             | Y              | Ν         | Ν           | 10          | 2               |
| EM [4]                   | $\mathbf{Y}^*$ | $Y^{***}$ | Ν           | 7           | 2               |
| Log-Barrier [14]         | $\mathbf{Y}^*$ | Ν         | Υ           | 3           | 3               |
| SmoothL1 [ThisPaper]     | $\mathbf{Y}^*$ | Ν         | Ν           | 3           | 2               |
| SQP [11]                 | Ν              | Ν         | Y           | 1           | 4               |
| ProjectionL1 [ThisPaper] | Y              | $Y^{***}$ | Y           | 1           | 3               |
| Interior Point [5]       | $Y^{**}$       | Ν         | Y           | 2           | 3               |

\* Improve approximations between iterations

\*\* Constrained objective improved over iterations

\*\*\* Correct gradient but only for WS

Page 39/40

![](_page_39_Picture_0.jpeg)

## Summary

- Number of iterations
  - Best: {SQP}
  - Constrained approaches better than unconstrained approximations
- Iteration time
  - Best constrained approach {ProjectionL1\*}
  - Constrained approaches highest iteration cost
  - SmoothL1\* best unconstrained
- Overall run-time
  - Best {ProjectionL1\*}
  - SmoothL1\* may be best suitable for many variables
  - {SQP} best in problems with very expensive function evaluations (due to low #iterations)