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Abstract

We apply a new active learning formulation to the prob-
lem of learning medical concepts from unstructured text.
The new formulation is based on maximizing the mutual
information that a sample labeling provides about the re-
trieval/classification model. This methodology is relatedto
and extends the Query-by-Committee approach (QBC) [12]
by exploiting unlabeled data in novel ways, beyond their
common use only as potential query points. Unlike QBC,
this method allows us to employ unlabeled data in addition
to labeled data in order to select more appropriate samples
for labeling. The samples thus chosen are both informa-
tive and also relevant according to a distribution of interest.
This flexibility allows us to also tailor the model to arbi-
trary distributions relevant to the task at hand, in particular
to the distribution of the test data. This formulation has
implications in scenarios where the training and test distri-
butions are different, or when a general model is adapted
to a more specific model. Experiments were conducted to
evaluate retrieval performance of natural-language text as-
sociated to various concepts of interest in the medical do-
main. We demonstrate the advantages of our formulation
compared with QBC, the state-of-the art active learning ap-
proach, and against random sample selection.

1 Introduction

Concept learning can benefit considerably from active
user interaction or feedback. For example, it has been
observed that Information Retrieval (IR) system interfaces
that support interactive collaboration can significantly in-
crease retrieval effectiveness [5]. Likewise, the learning and
knowledge discovery process can, in many cases, be made
more controlled and efficient by user guidance.

In active learning [8, 9, 12], also calledexperimental de-
sign in statistics, unlabeled or unclassified data is available
to the algorithm. At each step, the algorithm must appro-
priately choose an example for a user to label. The final

objective is that of learning the appropriate concept using
the least number of labels. In knowledge discovery, a sys-
tem must make efficient use of vast volumes of data to map
it into the underlying patterns; one way to address this is
by formulating optimized requests for user guidance. The
above examples of user feedback and guidance can in gen-
eral be abstracted by employing the concept of labeling.

In many learning tasks, it is often the case that the la-
beled data is limited in quantity or expensive to obtain, but
the amount of unlabeled data is large or easy to obtain. This
applies to many data mining, information retrieval, and gen-
eral classification and regression problems, but nowadays
this is particularly evident in text-based language process-
ing tasks. In the medical domain, text documents are abun-
dant (e.g.,in patient records, lab reports, etc) but only a few
are or can be labeled with a concept or topic of interest,
mainly due to the high cost of labeling, usually requiring
specialized knowledge.

In this paper we use text documents as our data source,
but the following formulation applies to other information
sources. In particular, we apply these ideas to medical infor-
matics by exploring and modeling medical concepts com-
monly found in electronic medical records.

Active Learning Theory It has been shown that the
number of data points needed for learning some functions
can be reduced drastically (exponentially) if these points
are chosen appropriately. For a class of noiseless, deter-
ministic classification problems, active learning requires
O(log(1/ǫ)) labels to find the classification boundary guar-
anteeingǫ error while passive learning requiresO(1/ǫ) ex-
amples [4]. While strict error bounds like the above can be
analytically obtained only for a limited class of problems,
empirical evidence suggests that active learning can be effi-
cient in more practical scenarios (e.g.,see [2, 10]).

Related Approaches For analysis purposes, active
learning (AL) methods can be divided into a few classes.
Active learning byuncertainty sampling, such as [7, 2], is
the process of selecting the unlabeled data point whose label
has highest uncertainty given the current model. An unfor-
tunate effect of this criterion is that noisy or rare data points



tend to be chosen as the model cannot describe them appro-
priately; these points are often not very useful for building a
classifier. A different criterion is provided in [11] where the
data point of choice is that which, when labeled, minimizes
the estimate of expected (future) error. While this criterion
attempts to directly optimize performance, an analytical ex-
pression for the expected error rarely can be obtained, and
sampling needs to be employed. However, appropriately
sampling from a distribution of interest is by itself a dif-
ficult task in practice. Moreover, this method requires re-
training the model for every point to be considered; this can
be computationally prohibitive.

Query-by-Committee (QBC) methods, whose funda-
mental concept was introduced in [12], and further devel-
oped in [4], offers a different perspective. In QBC, the data
point that reduces thesize of the version space1 is selected.
It turns out that this optimal point can be approximated by
that for which a set of independently trained models dis-
agrees the most (i.e.,regarding its label) (thus the termcom-
mittee). This concept has been embraced by various formu-
lations, including some examples in text processing and in-
formation retrieval [10, 1]. In QBC, the model only needs to
be evaluated, not retrained, for every competing data point.

Comparison with presented approachOur approach
is motivated by QBC, but it extends it in several important
ways that allow the use unlabeled data in novel roles (be-
sides their use only as potential query points2). QBC can
be derived from information theoretic principles. Thus, in
the following section, we start by defining a criterion for
active learning involving the maximization of Mutual Infor-
mation [3] relating various random variables defined over
data points, labels, and model parameters. We show that
when we condition this expression on appropriate random
variables, we obtain a range of problems that extends QBC
by allowing us to use active learning to more appropriately
employ the unlabeled data. This allows us to (1) select
points that are representative of the underlying data distri-
bution and that are at the same timeinformativeand, as a
related effect, (2) aim the descriptive power of the proba-
bilistic model towards arbitrary (desirable) regions of the
data space, such as that of known test points.

2 Unlabeled Data and Active Learning

The majority of active learning approaches pay little or
no attention to the role of unlabeled data points beyond
that of being potential query points. In other words, the
score that the active learning algorithm assigns to a potential
query or sample point is independent of the other unlabeled
points. An exception of the above is the recent transductive

1A measure representing the number or volume of parameters that are
consistent with the data

2Points for which a label can be requested.

experimental design formulation given in [17], which ap-
plies transductive learning (and thus uses all unlabeled data
points) to active learning for the case of regression prob-
lems. This distinction between a passive vs. more influen-
tial role of the unlabeled data points is fundamental for the
formulation in this paper.

The use of unlabeled data points motivated the concept
of semi-supervised learning. We believe that unlabeled data
can also play an important role in the context of active learn-
ing. We show that by using the information provided by
all or part of the unlabeled data, it is possible to improve
retrieval/classification performance. The present formula-
tion does not restrict the definition of unlabeled data to
just those data points that can be labeled by a user (query
points). Specifically, we can select any subset of the un-
labeled points, such as the test set (in cases where this is
known beforehand), and concentrate the model descriptive
power towards these, potentially more relevant, data points.

This is a more general problem since for diverse reasons
it may be advantageous to aim the modeling power at par-
ticular regions of the space. There has been increasing inter-
est in problems derived from having a test data distribution
that is known to differ from the training data distribution
[13, 6]. This is also of interest for handling concept drift or
non-stationary data distributions.

In active learning, even if the points of interest are known
beforehand, it is unclear what criteria should be used that
incorporates such points in the formulation (i.e., that in-
corporates the unlabeled test points in the unlabeled point
selection problem); however, see [14] for a method to ad-
dress linear regression using the expected generalizationer-
ror. Our formulation shows how the above problem can be
approached using general information theoretic principles.

3 Formulation

Let Y be a random variable representing the incidence
of a particular concept of interest;Y is defined over the
domainY (e.g.,Y = {true,false}). Let X be a random
variable defined over our input data representation spaceX .
For example, the input representation can be a text string
itself but usually a more compact representation can be em-
ployed. We use a subscript to denote a particular random
variable (e.g.,Xi) wherei belongs to some index setD.
For groups of random variables, we use sets as subscripts
(e.g.,XS , with S ⊂ D).

We define a model of a concept and text strings (or any
other input representation) as a probability distributionp3.
To this end,p(Y = y, X = x, Θ = θ) denotes the joint

3We use text strings as an example, since in our experiments wewill
focus on unstructured text data, but other representationscan be used, in-
cluding combination of text and categorical data.



probability of concept incidencey, inputx, and model (pa-
rameters)θ. Throughout this paper we will use the notation
p(x) to denotep(X = x) for any random variable or set of
variablesX .

3.1 Active Learning with Unlabeled Data

We consider exploiting our knowledge of available, un-
labeled data points in a novel way. As a consequence, the
information provided by labeling a data pointxi will now
depend not only on the data point in question, but on the rest
of the unlabeled data (and the model parameters as usual).

We represent every data point as a random variable. For
labeled data pointi, we associate the random variable pair
Xi, Yi taking values denotedxi andyi respectively. If the
point is unlabeled, then onlyXi = xi would be observed,
while Yi is unobserved (Yi is a hidden random variable).

Let us define the general problem as that of finding the
unlabeled data point whose label, once observed, provides
the maximum mutual information about the modelθ, con-
ditioned on everything that has been observed (labeled data
points with their labels and unlabeled data points). This can
be formalized by the following optimization problem:

argmaxi∈U I(θ; Yi|XD = xD, YL = yL), (1)

whereU andL denote the sets of unlabeled and labeled
data points respectively, andD = U

⋃
L denotes all the

data points in the dataset. This is equivalent to:

arg max
i∈U

H(Yi|xD,yL) − H(Yi|θ,xD,yL)

= arg max
i∈U

−
∑
yi

p(yi|xD,yL) log p(yi|xD,yL)

+

∫
θ

∑
yi

p(yi, θ|xD,yL) log p(yi|θ,xD,yL)dθ,(2)

whereH denotes the entropy of a random variable[3].
Since in general the integral overθ cannot be solved an-

alytically, we will restrictθ to take values in a finite domain
with cardinalityK (K can be as large as desired or appro-
priate to given computational resources). We will index the
values of theta by the set{1, ..., K}. This normally simpli-
fies the computational needs in the above problem to:

arg max
i∈U

−

K∑
k=1

∑
yi

p(yi, θk|xD,yL) log

K∑
j=1

p(yi, θj |xD,yL)

+

K∑
k=1

∑
yi

p(yi, θk|xD,yL) log p(yi|θk,xD, yL). (3)

This be expressed using the conditional KL

divergence[3]4:

i∗ = arg max
i∈U

KL[p(yi|θ,xD,yL)||

K∑
j=1

p(yi, θj|xD ,yL)], (4)

where the divergence is computed over the domain of both
yi andθ. Note that the domain ofθ is the set{θ1, ..., θK},
andxD, yL are known, fixed observations (they represent
the given data points and known labels).

The parameter values{θ1, ..., θK} are yet to be specified.
Generally speaking, if the probabilityp(yi, θ|xD ,yL) does
not have sufficient mass at these values, then the approxi-
mation in Eq. 3 would be inaccurate.

Sincep(yi, θ|xD ,yL) ∝ p(θ|xD,yL)p(yi|θ,xD,yL),
we would like to obtain values ofθ that are representative
of p(θ|xD ,yL) (i.e.,we would like to sample from this pos-
terior). One way to achieve this is by by choosing random
training examples from the dataset multiple times (in our
caseK times)5. Each time, this random subset of training
points can be used to compute a (Maximum-a-Posteriori or
MAP) estimateθk with k = {1, ..., K} (see algorithm box).

Algorithm for Semi-supervised Active Learning
Inputs:xU ,xL,yL (data),K.
Output:K models trained with actively labeled data.

1. Label a few randomly chosen data points

2. For each modelk compute MAP estimate forθk by
randomly assigning labeled data points to each model’s
training set

3. Repeat until a stopping criteria is met

(a) For each unlabeled data pointi (whose label could
potentially be requested)

• Compute KL divergence score using Eq. 4

(b) Select next point to label/query by finding the point
i with maximum KL divergence

(User feedback: Point is labeled by user)

(c) For each modelk compute MAP estimate forθk

using a random selection of labeled points

3.2 Relation to Query-by-Committee (QBC)

This is related to the Query-by-Committee (QBC) for-
mulation [12]. In a practical implementation of QBC, the
procedure is to choose the point for which a set of models
(committee) disagrees the most with respect to its label, also

4For discrete random variablesx andy, the conditional KL divergence
is definedKL(p(y|x)||q(y|x)) =

∑
x,y

p(y, x) log[p(y|x)/q(y|x)]
5We do not need to obtain samples foryi since we are summing over

its full domain



in terms of the KL divergence. Formally:

i∗QBC = argmax
i∈U

K∑
k=1

KL[p(yi|θk)||
1

K

K∑
j=1

p(yi|θj)] (5)

We can show that the above objective function may be ob-
tained by maximizing the mutual information, but without
conditioning on observations. Also, note that Eq. 4 is writ-
ten as a conditional KL divergence [3] defined over the la-
bel and model variables and not a sum of KL divergences
defined over the label random variable alone, as in QBC.
Likewise, in the new formulation the sum in the second term
marginalizes over the model space. As a result every model
(from the committee) is taken into account differently.

We will see that this extension: (1) opens the door to
semi-supervised forms of active learning, where unlabeled
data plays a more influential role in the selection of points
to label and (2) allows to explicitly direct the model descrip-
tive power through active learning.

4 Semi-supervised Active Learning

The above formulation offers a more general framework
for active learning problems, in particular in cases where
unlabeled data is available beforehand.

In order to develop the above formulation for a definite
family of models, we now consider the graphical model in
Fig. 1 representing the following factorization:

p(xD, yD, θ) =
∏
l∈L

p(xl|yl, θ)p(yl|θ)
∏
u∈U

p(xu|yu, θ)p(yu|θ)p(θ).

The important property of this model, relevant to our anal-
ysis, is the conditional independence of the random vari-
able pairs(Xi, Yi) and(Xj , Yj) given the model parame-
tersθ for any (i, j), labeled or unlabeled. Algorithms for
(supervised) training are standard, thus we do not cover this
here. However, for efficiently computing the KL divergence
it is useful to note thatp(yi|θj ,xD,yL) = p(yi|θj ,xi) and
p(θk|xD ,yL) = p(θj |xU ). We defer the derivations due to
space limitations6.

4.1 Aiming Model Descriptive Power

While throughout the presented formulationxU has rep-
resented the set of unlabeled data points, normally referred
to as those that could be potentially labeled by the user, we
can also assign other meanings to this set. Note that the se-
lection criterion implied by our active learning formulation
attempts to query points that are informative (in the usual
QBC sense) but also representative of the underlying data
distribution. The role of this unlabeled setxU is to provide
an approximation of the underlying data distribution.

6This is easy to show by using the conditional independence assump-
tions implied by the Bayes network

xl

yl

θ
xu

yu

l∈L u∈U

Figure 1. General Bayesian network structure employed
for the analysis in Sec. 4, where(Xi, Yi) is independent of
(Xj , Yj) given the modelθ. We use the most basic rep-
resentation for the conditional distributionp(xi|yi, θ) (for
any i), but this distribution can be arbitrary, and include
other variables, as long as the independence is maintained.

The above formulation remains the same if for some rea-
son we desire to assign to this set only part of the unlabeled
data or any other set of data points. One particular situa-
tion of great interest is the case when there is knowledge
of the types of data points that the model could encounter
during testing (e.g.,at classification or retrieval). This al-
lows us to tailor active learning to particular test data sets.
The goal is to obtain models that achieve high performance
in the test dataset by leveraging knowledge of the test data
distribution. An application of this concept will be seen in
the experiments.

We remark that a natural use of this property is for ap-
proaching problems where train and test distributions are
different [13]. Another type of problems that can benefit
from this approach is model refinement. This is the case
where a generic model was estimated using generic data,
but once more specific data become available, active learn-
ing can be geared towards better modeling such data.

5 Experimental Evaluation

Experiments were performed using actual electronic
medical records (EMR) from patients at a medium-sized
heart hospital7. Our experiments are designed to evaluate
the proposed methodology in our ultimate objective of cor-
rect retrieval and classification of patients/documents with
certain medical conditions or state from unstructured text
(e.g.,transcribed doctor notes, lab reports, etc.).

5.1 Representation and Datasets

We designed our experiments to work at the sentence
level; thus in reference to our notation in Sec. 3,Xi is a
random vector representing a sentence-based observation.

7Name undisclosed due to privacy agreements.



With the help of expert personnel, we concentrated on gath-
ering information about six medically relevant concepts re-
lated to heart disease. These concepts were chosen pri-
marily due to their prevalence in medical records involving
heart related diagnosis and treatment. Basic properties of
the datasets are shown in Table 1.

These sentences were obtained from a set of∼2 million
sentences by searching for one or two keywords obtained
simply from the concept name. A random subset of the
matching sentences were labeled by an expert and saved.
As expected, keywords were only useful at a first level re-
trieval; not surprisingly a mixture of completely irrelevant,
affirmative, or negative sentences were obtained;e.g.,not
all patients with documents containing the keywordsmok*
are actual smokers or even have a history of smoking, as
seen in the table.

In our task, the labels T=True and F=False were chosen
to indicate the following: (1) T→ the concept ispresent
and affirmativein the sentence (2)F→ the concept isabsent
OR the concept ispresent but negatedin the sentence. In
general one can further divide the F label into F (present
but negated) and N/A (absent).

5.2 Experimental Settings

We set the number of committee membersK = 15
throughout all our experiments. The data was used as fol-
lows: for each dataset, we first divided it into two subsets,
one held out for testing only (20%) and one used for training
(80%). From the training subset, a portion was assigned for
initial training (8%)(each model was initially trained with-
out active learning with a different random set of points
from this portion), and the remaining examples (92%) were
assigned for active learning; this last set is formed by the
points that the active learner can query (request the user to
label). Finally, not all active learning sentences are used,
but only a fixed amount (75% of these). These settings were
the same for all datasets. A total of 10 runs were performed
where the above subsets were always randomized. The
method does not require any tunable parameter other than
K. The performance reported is the average across allK
models. In case an optimal model need to be chosen among
the aboveK, a cross-valuation set can be employed.

In order to test our approach without any further special
domain knowledge tuning, which can influence the results
considerably, we used a naive Bayes network as our prob-
abilistic model. In practice any probabilistic model can be
used, as long as it satisfies our iid assumption in Sec. 4. The
network had a fixed number of input features (words in our
case), set to 20. The words were chosen in order to maxi-
mize the mutual information between the words appearance
random variable and the label. This calculation was part of
model training. No specialized medical or general lin-

Table 1. Test Datasets
Name # Labeled (%T/%F)
1. Tricuspid Valve Replacement 255 (45%/55%)
2. Mitral Regurgitation 321 (26%/74%)
3. Assisted Living 123 (60%/40%)
4. Congestive Heart Failure 264 (81%/19%)
5. Smoking Currently 383 (49%/51%)
6. Smoking History 383 (73%/27%)

guistic databases (e.g.,[15, 16]) were used. This adaptation
goes beyond the scope of this work8.

5.3 Results

In order to carefully test our formulation, we compared
two embodiments of our method against random sentence
selection for labeling (i.e., label any randomly chosen sen-
tence) and against QBC sentence selection (the standard in-
formation theoretic active learning approach).

While the two versions attempt to solve Eq. 1 (using the
approximation in Eq. 4), the setxU is different for the two
versions. In version 1xU are data points in the active set.
In version 2,xU are data points in the test set. In any case,
the points available for querying/labeling are only those in
the active set.

We measured two basic performance quantities (1) rel-
ative remaining error on the active set (2) relative remain-
ing error in the test set. Performance error (E) is defined
as the number of incorrect retrievals (equivalently labeling
a sentences as F when its label is T andvice versa). The
relative remaining error is the proportion of error still re-
maining after running the algorithm, compared to the initial
error:RE = Ef/E0, whereEf is the performance error af-
ter training andE0 is the performance error after step (2) of
the algorithm in Sec. 3.1. We use theRE measure to elim-
inate any performance advantages after step (2) that may
have resulted from randomly sampling the dataset. The er-
ror in the active set is calculated on the remaining unlabeled
points after each step. Randomized labeling is shown for
completeness, but was clearly less effective overall. Fig.2
shows the combined results indicating performance in test
and active sets, for all algorithms. Mean and standard devia-
tions reported are with respect to 10 (randomized) runs (see
Sec. 5.2) andK models. Versions 1 and 2 are referred to as
[Cond on active set] and [Cond on test set] respectively.

Regarding the performance on the test set, we observed
that the two versions of our algorithm outperform QBC in
average. This result was observed for all datasets. Our
method conditioned on the test set always performed better

8Additionally, it is not clear how to appropriately incorporate these spe-
cialized domain knowledge sources into an information theoretic active
learning formulation
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Figure 2. Relative performance comparison between (1) the proposed method conditioned on the active set (examples that can
be requested for labeling) (2) proposed method conditionedon the test set (held out, not available for labeling), (3) QBC, and (4)
random selection. Each algorithm is tested on all datasets.Relative performance is computed on active (left) and test (right) sets.

in average than our method conditioned on the active set.
This clearly demonstrates that it is possible for the active
learning formulation to improve performance in an arbitrary
set (in particular a test set). The difference in performance
between our method conditioned on the test set and QBC
was always statistically significant.

Regarding the performance on the active set, we ob-
served that in general, our method conditioned on the active
set performs better than our method conditioned on the test
set (except for dataset 6, where surprisingly the error was
reduced to almost zero by the second algorithm). This re-
sult is consistent with our formulation and indicates (along
with the previous result) that the conditioning on different
sets have the desired behavior. We could not observe a clear
difference between QBC and our method conditioned on the
active set, but note that in most cases the error decreases to
zero, making comparison less relevant.

Fig. 3 shows the percentage incorrectly labeled sentences
as a function of the number of training examples provided.
The mean curves are shown, computed across 10 runs. Note
that there are four curves: two for QBC and two for our
method (conditioned on the test set). One curve represents
the error measured on the test set and the other on the active
set. We can observe that the error evolution on the test set
tends to level after a number of active learning steps, but we
expect the error to increase after more steps as a common
consequence of over-fitting. In all cases the average error
in the test set is lower for our formulation compared with
QBCs error in the test set. This is expected since our method
aims its descriptive power to the test set while the standard

QBC does not. Regarding the active set, our model’s perfor-
mance is comparable with QBC’s since we are not aiming
the descriptive power to this set.

The rate at which error is reduced is comparable for both
methods (in all scenarios). This is not a drawback in our for-
mulation since the bound on the number of labels required
by QBC is comparable to the best known bounds. The error
on the active set tends to decrease to zero for both methods.
We believe this is because only theeasyexamples are left
in the active set after a number of iterations.

6 Conclusions

We have approached the problem of medical concept
learning from text using a novel formulation for active
learning. The formulation is designed to incorporate un-
labeled data points in a new manner. It is thus, unique
at extending QBC by its handling of unlabeled data. We
have shown clear performance advantages over the widely
used QBC when evaluating the results on a held out test
set. More importantly, our method can be employed to aim
the model descriptive power to arbitrary areas of the input
space (e.g.,arbitrary set of documents). We have pointed
out connections to QBC, addressing when they are equiva-
lent. The resulting formulation has a natural interpretation:
it proposes to choose data points that are informative but
also representative of the distribution of interest.

There exist practical problems derived from having a test
distribution that differs from the available training distribu-
tion; a topic that is receiving increasing attention in artificial
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Figure 3. Percentage incorrect labels and number of actively labeledsamples for our formulation vs. QBC. Performance for
test and active sets is shown. Curve was sampled at every active learning step (iteration); however to avoid cluttering the curve
corresponding marker (·, ◦,×, +) is shown every 10 active learning steps.

intelligence. In medical informatics, there are cases where
a training corpus exist for some particular domain, but the
actual domain of the task varies. This has been our experi-
ence when data from one medical institution or health care
provider has been labeled (at a high cost), but we wish to
apply our learned model to data from a different medical
institution. In a more general sense, we believe it may be
beneficial to use a training corpus to learn generic models,
which can then be fine-tuned through our active learning ap-
proach by conditioning on data from the new, more specific
task. This is also of interest for handling concept drift or
non-stationary data distributions. We see our formulation
as a useful tool that can be exploited toward approaching
these interesting problems.
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