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This document serves as a supplement to the paper “Bayesian Estimation of Transcript

Levels Using a General Model of Array Measurement Noise” by Ron O. Dror, Jonathan G.

Murnick, Nicola J. Rinaldi, Voichita D. Marinescu, Ryan M. Rifkin, and Richard A. Young,

published in the Journal of Computational Biology in 2003. The journal paper describes the

Bayesian Estimaton of Array Measurements (BEAM) technique for creating a noise model

for gene arrays from experimental data and for using such a noise model to identify significant

changes in expression level, combine repeated measurements, or deal with negative expression

level measurements. This supplement describes efficient methods to compute the Bayesian

estimates discussed in the paper, as well as the associated uncertainties and p-values.∗

∗This supplement follows the probabilistic notation of the journal paper. Latin characters without serifs
(x, y, f) denote random variables, and the corresponding characters with serifs (x, y, f) denote sample values
of those random variables. Boldface characters (y) denote vector quantities.

• px(x): probability density of x, evaluated at x.

• px|y(x|y): conditional probability density of x given an observation y of y.

• E(x|y): expected value of x given the observation y of y. This is shorthand for E(x|y = y).

• x̂(y): Bayes least squares estimate of x given the observation y of y.

• σ2
x̂(y): variance of the posterior distribution of x given the observation y of y.
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We assume a noise model of the form

yij = gijxij + fj + eij,

where xij represents the true transcript level of gene j on chip i, and yij represents the

normalized measurement of gene j on chip i (see Equations (1) and (2) of the journal paper).

The noise terms gij and eij are independent and identically distributed for each chip i and

gene j, and the fj are independent and identically distributed for each gene j. The numerical

methods described here apply regardless of the form of the noise probability density functions

pg, pe, and pf , or of the prior probability density function px. For any given noise and

prior models, these computations need only be carried out once, to create lookup tables for

estimators, uncertainties, and p-values.

1 Estimation of Absolute Transcript Levels

The expectation and variance of the true transcript level given a set of repeated measure-

ments are:

x̂(y) = E[x|y] =
1

py(y)

∫
xpy|x(y|x)px(x)dx (1)

σ2
x̂(y) = E[(x − x̂)2|y] = E[x2|y] − E[x|y]2. (2)

Evaluation of py|x(y|x) and py(y) requires that we consider all combinations of values of

error coefficients and true transcript levels that could produce the set of observations y =
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(y1, y2, · · · , yn).

The presence of an unknown bias term f common to all the observations in y complicates

the computation, because py|x(y|x) is not equivalent to py|x(y1|x) · · · py|x(yn|x). In an earlier

version of our work,1 we assumed that these two quantities were equivalent. In other words,

we treated the bias term as a measurement-specific error. Although sometimes reasonable,

this simplifying approximation may lead to underestimation of ratios and failure to identify

statistically significant differences in the expression level of a particular gene, combined with

exaggerations of the increase in confidence due to repeating an experiment. Discarding the

bias term entirely would lead to the opposite problems — overestimation of ratios, differences

in gene expression labeled falsely as significant, and underestimation of the the increase in

confidence due to repeating an experiment. The computational methods described in this

supplement treat the bias term rigorously.

Conditioned on the value of the true level x and the bias f , the measurements (y1, y2, · · · , yn)

are independent. That is, py|x,f(y|x, f) = py|x,f(y1|x, f) · · · py|x,f(yn|x, f). We could evaluate

Equation (1) by computing E[x|y, f ] for each value of the bias f, and then marginalizing

over f. Taking advantage of the fact that the bias term is additive, however, we can evaluate
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Equation (1) more efficiently by rewriting it as

E[x|y] =

∫
xpx(x)py|x(y|x)dx∫
px(x)py|x(y|x)dx

=

∫
xpx(x)

[∫
py,f|x(y, f |x)df

]
dx∫

px(x)
[∫

py,f|x(y, f |x)df
]
dx

=

∫
xpx(x)

[∫
py|x,f(y|x, f)pfdf

]
dx∫

px(x)
[∫

py|x,f(y|x, f)pfdf
]
dx

=

∫
x

[∫
px(x)py|x,f(y|x, f)dx

]
pf(f)df∫ [∫

px(x)py|x,f(y|x, f)dx
]
pf(f)df

=

∫ [∫
xpx(x)py|x,f(y − f |x, 0)dx

]
pf(f)df∫ [∫

px(x)py|x,f(y − f |x, 0)dx
]
pf(f)df

, (3)

where y − f = (y1 − f, y2 − f, · · · , yn − f).

If we define

mk(y) ≡
∫

xk px(x)py|x,f (y|x, 0)dx (4)

for k = 0, 1, 2, we can rewrite Equation (3) as

E[x|y] =

∫
m1(y − f)pf(f)df∫
m0(y − f)pf(f)df

. (5)

A similar derivation yields

E[x2|y] =

∫
m2(y − f)pf(f)df∫
m0(y − f)pf(f)df

, (6)

allowing us to compute the uncertainty measure of Equation (2).

The integrals in Equations (5) and (6) can be implemented as convolutions of mk and

4



pf . Evaluating mk(y) requires computation of py|x,f (y|x, 0), the conditional distribution of y

given x and the fact that the bias is zero. To compute py|x,f (y|x, 0), note that py|x,f (y|x, 0) =

py1|x,f (y1|x, 0) · · · pyn|x,f (yn|x, 0). When f = 0, our noise model becomes y = gx + e. For each

value x, py|x,f (y|x, 0) is therefore a convolution of pgx and pe, where pgx(·) = 1
x
pg(

·
x
).

2 Estimation of Transcript Level Ratios

The log ratio estimator can be written as†

r̂(ya,yb) = E

[
log

xa

xb

∣∣∣∣ya,yb

]
(7)

= E[log xa − log xb|ya,yb]

=
1

pya,yb
(ya,yb)

∫∫
(log xa − log xb)pya,yb|xa,xb

(ya,yb|xa, xb)px(xa)px(xb)dxadxb.

Unfortunately, ya and yb are not independent given xa and xb, because of the presence of

a common bias. We wish to avoid evaluating E[log xa − log xb|ya,yb, f ] separately for each

value f . Replacing x with log xa − log xb in the derivation of Section 1 gives a variant of

Equation (5)

r̂(ya,yb) =

∫
n1(ya − f,yb − f)pf(f)df∫
n0(ya − f,yb − f)pf(f)df

(8)

†In this section, we omit the base of the logarithm from our notation; the same formulas apply for
logarithms of any base.
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where

nk(ya,yb) ≡
∫∫

(log xa − log xb)
k pya,yb|xa,xb,f (ya,yb|xa, xb, 0)pxa,xb

(xa, xb)dxadxb

=

∫∫
(log xa − log xb)

k py|x,f (ya|xa, 0)py|x,f (yb|xb, 0)px(xa)px(xb)dxadxb.

To simplify this formula for k = 0, 1, 2, define qk by

qk(y) ≡
∫

(log x)k py|x,f (y|x, 0)px(x)dx.

Evaluation of qk(y) is similar to evaluation of mk(y), as described in Section 1. Then

n0(ya,yb) = q0(ya)q0(yb)

n1(ya,yb) = q1(ya)q0(yb) − q0(ya)q1(yb)

n2(ya,yb) = q2(ya)q0(yb) − 2q1(ya)q1(yb) + q0(ya)q2(yb)

The numerator and denominator of Equation (8) can then be computed by convolution. To

compute the uncertainty σ2
r̂(ya,yb) associated with the ratio estimate, we write the variance

of the posterior distribution as

σ2
r̂(ya,yb) = E[(r − r̂)2|ya,yb] = E[r2(ya,yb)|ya,yb] − E[r(ya,yb)|ya,yb]2.
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A derivation similar to that of Equation (8) yields

E[r2(ya,yb)|ya,yb] =

∫
n2(ya − f,yb − f)pf(f)df∫
n0(ya − f,yb − f)pf(f)df

.

3 Significance tests

To compute the p-values used to test whether or not two sets of array measurements corre-

sponding to the same gene in two cultures are significantly different, we use the formula

p =

∫ ∞

x∗=0

Fx∗(r̂)px|y(x∗|ya,yb)dx∗, (9)

where Fx∗(r̂) =
∫
|r̂(y1,y2)|≥|r̂∗| py|x(y1,y2|x∗)dy1dy2.

We begin by evaluating the function Fx∗(r̂) for all true levels x∗ and ratio estimates r̂.

For each value of x∗, we compute py|x(y1,y2|x∗) over a wide range of observations y1 and

y2.
‡ To do so, note that

py|x(y1,y2|x∗) =

∫
py|x,f(y1,y2|x∗, f)pf(f)df

=

∫
py|x,f(y1 − f,y2 − f |x∗, 0)pf(f)df. (10)

We compute py|x,f(y1−f,y2−f |x∗, 0) = py|x,f(y1−f |x∗, 0)py|x,f(y2−f |x∗, 0) and then evaluate

Equation (10) by convolution. Fx∗(r̂) amounts to a cumulative distribution of the log ratio

estimates |r̂(y1,y2)| over the space of possible measurements (y1,y2). We compute this from

‡The vector y1 represents the same number of measurements as ya, and y2 represents the same number
of measurements as yb.
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a weighted histogram of the values |r̂(y1,y2)|, with the weights given by py|x(y1,y2|x∗).

Once we have stored lookup tables for the functions Fx∗(r̂), we can compute the signif-

icance value p according to Equation (9). We evaluate px|y(x∗|ya,yb) using an expansion

similar to that of Equation (3):

px|y(x∗|ya,yb) =

∫
py|x,f(ya,yb|x∗, f)px(x

∗)pf(f)df∫∫
py|x,f(ya,yb|x∗, f)px(x∗)pf(f)dfdx∗ (11)

We compute the numerator of Equation (11) using the fact that py|x,f(ya,yb|x∗, f) = py|x,f(ya−

f,yb−f |x∗, 0) = py|x,f(ya−f |x∗, 0) = py|x,f(yb−f |x∗, 0). The denominator can be computed

in the same manner, or as
∫

m0(y − f)pf(f)df , where m0 is defined as in Equation (4) and

y represents the observations of both ya and yb.

To accelerate the computations when ya and yb each represent multiple measurements,

one may approximate Equation (9) by Fx̂(ya,yb)(r̂(ya,yb)). This amounts to using the ex-

pected value of the true transcript level x∗ under the null hypothesis, rather than its entire

distribution. For our noise and prior models, this approximation produces results close to

those of Equation (9).

4 Convergence and sampling

Similar analysis can be used to show that the estimators we propose are guaranteed to

converge if the additive noise terms f and e have finite expectation and the prior px(x) falls

off faster than 1
x

beyond some transcript level. The uncertainty measures will converge if the

additive noise terms have finite variance and the prior falls off faster than 1
x2 beyond some
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level. Repeated measurements lead to faster convergence under more general conditions.

The p-values are well-defined whenever the estimators converge. We found that using our

noise model, the integrals converged quickly, with the numerical integrations requiring only

a limited sampling range. If one wishes to use an alternative model that lacks desirable

convergence properties, one could select estimators based on the median of the probability

distribution rather than on its expected value.2
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