6.842 Randomness and Computation

October 4, 2017

Homework 4

Lecturer: Ronitt Rubinfeld Due Date: October 11, 2017

Homework guidelines: As in previous homeworks.

The following problems are not for turning in.

- 1. (Quadratic non-residuosity) Let Z_n^* be the group of integers that are relatively prime with n. An element $s \in Z_n^*$ is said to be a quadratic residue modulo n if there exists $r \in Z_n^*$ s.t. $s \equiv r^2 \mod n$. Give a private-coin interactive proof system for the language of pairs (s, n) such that s is not a quadratic residue modulo n.
- 2. You are given a 2-SAT formula $\phi(x_1, \ldots, x_n)$. Consider the following algorithm for finding a satisfying assignment:
 - Start with an arbitrary assignment. If it's satisfying, output it and halt.
 - Do s times:
 - Pick an arbitrary unsatisfied clause
 - Pick one of the two literals in it uniformly at random
 - Complement the setting of the chosen literal
 - If the new assignment satisfies ϕ , output the assignment and halt.

Show that if you pick s to be $O(n^2)$, and ϕ is satisfiable, you will output a satisfying assignment with probability at least 3/4.

The following problem is to be turned in.

1. Give a deterministic poly(n)-time algorithm that, given n, finds a coloring of the edges of the complete graph K_n by two colors such that the total number of monochromatic copies of K_4 is at most $\binom{n}{4}2^{-5}$.