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Lecture 1
Lecturer: Romnitt Rubinfeld Scribe: Ray Hua Wu

1 The Probabilistic Method

Show an object exists by showing that it probably exists, specifically that it occurs with probability
greater than 0. (An object exists either with probability 0 or 1, so if it exists with probability greater
than 0, its probability is 1.)

Descartes: “I think, therefore I am.”

Erdos: “I probably exist, therefore I am.”

1.1 Example 1: Proper n-Coloring

Consider a set S, with subsets 51, ..., S, all of the same size . Can we n-color the elements of S such
that no set is monochromatic?

Let’s look specifically at proper 2-coloring, that is, coloring with just two colors.

With S containing three elements a, b, and ¢, with S; = {a,b}, S2 = {a,c}, and S3 = {b, ¢}, there
is no solution. From the perspective of any one element, both other elements (with which a subset is
shared) must be a different color, but there is only one other color, so they’re the same color, making
the subset containing just them monochromatic.

With larger sets and larger number of elements, the problem could become more unclear.

Theorem 1 If m < 271, there exists a proper 2-coloring.

Proof If we color each entity in S either red or blue randomly, then for each subset, monochromaticity
occurs when either all were colored red or all were colored blue. As there are [ elements in each subset,
the probability the subset is monochromatic is % + % = 2,%1 As there are m such subsets, the sum
of the probabilities for the subsets is 5%r. By the union bound, the probability that there exists a
monochromatic subset is at most this quantity, since the union of the events of monochromaticity for
each subset is the event of monochromaticity in at least one of the subsets. If m < 2!=1, then sior < 1,
so the probability there is no monochromatic subset is positive, and thus by the probabilistic method

there is necessarily a coloring of the elements that is a proper 2-coloring. l

Note that this proof is nonconstructive: despite proving our theorem, we have not been equipped
with a method to generate a proper 2-coloring given a problem instance.
In general, Proper n-Coloring is an NP-complete problem.

1.2 Example 2: Sum-free Sets

Definition 2 A sum-free set is a set of positive integers A such that ay, as, a3 € A where ay +as = as.

Theorem 3 (Erdos) For any subset B of n positive integers, 3A C B such that A is sum-free and
Al > 3

Proof Without loss of generality, let b, be the largest element in B. Find a prime p > 2b,, such that
p=2 (mod 3). Define an integer k such that p = 3k + 2. Let C be k + 1, ..., 2k + 1. The following are
true about C":
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e ( is sum-free

e (' is sum-free under addition in Zy, that is, it is sum-free modp

C is sum-free under addition because twice its smallest element is greater than its largest element
(2(k +1) > 2k + 1), and C is sum-free under addition in Z; because (2k + 1) + (2k +1) =4k +2 =k
(mod 3k + 2), and if the highest numbers can’t add up to be high enough to be k+1 (mod 3k + 2),
neither can lower numbers.

Construct an A, with elements from B such that xb; mod p € C, where = is a randomly chosen
element of Z;. We claim that there exists some z for which A, both is sum-free and has more than %
elements, and choose this as our A satisfying the theorem.

Suppose A, isn’t actually sum-free. Then, 3b;,b;,b, € A, such that b; + b; = bg. If so, then
xb; +xb; = xby, and thus also xb; +xb; = by (mod p), but this is not possible, because zb;, xb;, by, €
C, and C is sum-free and sum-free modp.

Vi,Vy € Zj,, a unique z € Zj satisfies y = xb; (mod p). Thus, the probability y maps to b; is p—il.

Thus, the expectation of zb;modpe C' is ;%, which we established above as greater than % Thus, the
expectation on |A,| is greater than %. Define indicator o;(z) = 1 if 2b; mod p € C and 0 otherwise.

Then, E,[0;(x)] = Pryloi(z) =1] = z‘)%ll > & and FL[|A,]] = Ey[> oi(z)] = X Ezloi(x)] > 5. Thus

there must be some x such that [A,| > 5. W

2 Brief Preview: Lovasz Local Lemma

We will discuss the Lovédsz Local Lemma when the class next meets. We are motivated to attempt to
improve our methods of combining small results because the union bound is actually really weak, and
often we can make at least partial assumptions of independence.

If the probabilities of our “bad events” (ones we want to avoid) are independent and nontrivial, the
latter term meaning that for none of the events is the probability 1, then the probability of the union of
the bad events is less than 1, allowing us to prove the avoidability of the bad events.

The Lovéasz Local Lemma says that if for all bad events A;, the probability is less than p, and the
dependency digraph has degree < d, where ep(d+1) < 1, then the probability of no bad events is greater
than 0.

Note that the number of bad events itself does not appear in the inequality.



