
6.842 Randomness and Computation October 11, 2017

Lecture 10
Lecturer: Ronitt Rubinfeld Scribe: Tom Kolokotrones

1 Space Bounded and Random Turing Machines and RL

1.1 Space Bounded and Random Turing Machines

When studying space-bounded computation, we must be somewhat careful about how we define
a Turing Machine, particularly when the space bound is sublinear. In order to accommodate this
(important) special case, we will use a multitape Turing Machine with several additional restrictions.
The first tape is the input tape; it is read-only, but can otherwise be accessed normally. The final tape
is the output tape; it is write-only so that the Turing Machine can produce arbitrarily long output, but
cannot use the tape in order to circumvent the space limit. To make the output more elegant, we can
also permit the Turing Machine to freely erase the output tape at any time, but this doesn’t change
the machine’s power. The remaining tapes are the work tapes; they are read/write and behave exactly
as normal Turing Machine tapes do. When we refer to the space complexity of a computation, we are
referring only to the amount of work tape used.

We will also need to define a Randomized Turing Machine. Such a TM differs from the standard
form in that it has access to a supply of random bits. One can imagine this source either as a sort of
oracle that the TM can call at each step to generate a random symbol (typically 0 or 1), or as having
access to an infinite tape full of random symbols, which the Turing Machine can read in one at a time.
However, using that version, the head on the random tape can only move to the right and, each time the
TM reads in a new random symbol, the tape also advances a single step, so that the only way to recall a
previously used random bit, is to store it. These extra limitations are needed in space-bounded models
in order to prevent the Turing Machine from being able to “store” bits outside of the work tape. Further,
for a Randomized Turing Machine to be a decider, we require that it halt on every input, regardless of
the randomness used.

1.2 Random Space Bounded Computation and RL

The question is, how much extra computation space do you need? We’re only going to charge for the
space that we actually get to use to do work, where we can read and write. So what can we keep there?
We can keep pointers, we can copy the input or part of the input, we can do addition or subtraction or
keep track of mins and maxes. We can do all kinds of things here. So, what we want to define now is
the class RL, which is the class of problems for which you only need (randomized) logarithmic space.

Definition 1 RL — A language L ∈ RL iff there exists a Randomized Turing Machine which, given
an input x of length n, always halts, uses at most O(log n) space, always rejects if x /∈ L, and accepts
with probability 1

2 or greater if x ∈ L.

Now, what can we keep in logarithmic space? Just numbers and pointers, that’s it. We can’t copy
the whole input. We can hardly keep anything in there. So, what we’re going to do today is randomized
logspace computation.

Let’s point out that dynamic programming does not tend to work in logspace, because, in dynamic
programming, the idea is that you don’t want to recompute things, that means you store it, but where
would you store it? You only have logspace. Usually the algorithms that do it, for example in a graph
problem, keep order n2 at least, maybe n2 log n bits, just to keep track of the best solution at the first

1

level, the next, etc. Just think of memoization, where you’re keeping track of a ton of stuff sometimes,
n2, n3, and you need the best solution for each subproblem so you don’t have to go recompute. So
that’s what dynamic programming does, it uses a ton of space, well, it’s usually not exponential, it’s
polynomial, but we’re in an an extreme place here, random logspace. What can we do with very little
extra space? All we have is room for a few pointers, maybe some numbers, and a counter or two.
However, what we’re going to show is that USTCON ∈ RL.

2 USTCON is in RL

2.1 A Randomized Algorithm for USTCON

Even though the typical ways to find paths, BFS, DFS, the ways that work in maybe the fastest
time, need a lot of space, there is a way to do Undirected ST-Connectivity in logspace. You can think
of those Roomba vacuum cleaners, you know those little guys, they don’t really have to keep amazing
maps. They can just keep a little bit of memory to figure out where they are, to get through the room.
So, you can think of the vacuum cleaner, what would the vacuum cleaner do?

So, what would be the algorithm? Last time we talked about random walks on graphs, so you’re
probably guessing that we’re going to use them, and, yes, you’re right. You’re thinking just the way I
wanted you to think, because we are going to take a random walk on a graph. In fact, that’s the whole
algorithm. So, we are going to start at s. So, what’s the Turing Machine going to do? It’s going to scan
the description until it gets to the row for s and then start a random walk at s. So, we only need to
scan; we only need a pointer to go down this thing. We’re going to scan down that input until we find
the first place that we have the row written down for s and then what we’re going to start doing is to
take a random walk. We pick an out neighbor with uniform probability and then keep doing that. So,
the algorithm is:

On input G, an undirected graph:

1. Start at s.

2. Take a random walk for cn3 steps.

(a) If ever we encounter t, output YES.

(b) Otherwise output NO.

We’re going to choose c such that cn3 is at least something like 4 times the Cover Time. Remember
that, for a graphG, the Cover Time, C(G) = maxs∈N (G) E[# steps to reach all nodes of G starting at s].
We showed that the max cover time is O(n3), so it takes time n3 times some constant. Maybe it’s 2,
maybe it’s 3, maybe it’s 15. I want to take 4 times that many steps, so it’s some other constant times
n3. So I’m taking 4 times as many steps as the expected cover time. So, first of all, what do we need to
keep track of to implement this thing? What are my space needs? We need a counter to keep track of
how many random walk steps: that’s O(log n). We need pointers for scanning to pick our next step. We
need to choose uniformly from each of the adjacent vertices. If we’re at some node u, we need to figure
out its degree d, so we need a counter for that and then need to toss a fair d-sided die (so that each face
has a probability of d−1) to determine which neighbor m of u to which to move. Then, we need to scan
again through u’s neighbors until we reach the mth neighbor and then that will be the next node in the
random walk.

So, our time is polynomial, but it’s not linear, whereas other things for doing connectivity are linear,
which is great, but this is at least polynomial. Each step we take requires that we toss enough coins to
simulate a die. So, first, we need to figure out the degree of u, then we need to toss a die, then we need

2

to scan through the neighbors of u until we find the mth one. Each step will take linear time (in the
number of nodes). Each step is O(n), we need to do O(n3) steps, so this is O(n4) running time.

We need a counter for the number of steps, a counter for degree, a counter for which neighbor is
chosen, and a pointer for scans, so this is not so bad. This whole thing is O(log n) space and the time
used is O(n4).

2.2 A Little Complexity Theory

This is not really a complexity class, but let’s just think for a second. Can we have something run in
exponential time, but in logarithmic space? No, because eventually the configuration will repeat itself.
This is easy to see in the deterministic case. A Deterministic Turing Machine using logarithmic space
only has 2O(logn) = poly(n) configurations for its space. So, if it were to run for exponential time, a
configuration would have to repeat, and, because the TM is deterministic, it would then loop forever.
Therefore, a logspace decider can run for at most polynomial time.

This is also true for Randomized Turing Machines, by similar, but somewhat more subtle, reasoning.
If a Randomized Turing Machine runs for more than 2O(logn) = poly(n) time, then, some configuration,
say s, must repeat. Therefore, there exists some sequence of random bits rss, which, beginning at s will
cause the TM to return to s again. But then, by beginning at s and repeating rss over and over, the
RTM can be made to loop as many times as desired, and, in particular, can loop forever. Since a decider
must halt on any input, regardless of the random bits generated, this cannot occur, so a randomized
logspace decider can run for, at most, polynomial time. In fact, we can show that RL ⊆ SC, where
SC is Steve’s Class (named after Steven Cook) which consists of all languages that can be decided in
polynomial time and polylog space [1]. A more recent result shows that RL ∈ L3/2 [2].

Similar reasoning also applies to nondeterministic logspace deciders, since we need only decide those
branches not containing loops, so, again, we only need 2O(logn) = poly(n) time (a limitation we can
explicitly impose using a counter).

2.3 Proving the Correctness of Our Algorithm

We have our space needs, which are logarithmic, and our time needs, which are polynomial. But we
haven’t checked whether the algorithm works. Let’s do that. Why does the algorithm work? If s and
t are not connected on a graph, like if they’re in different connected components, and we start walking
at s, always picking a neighbor in the random walk process, will we ever get to t? No, there is no way
we can get to t. So, if s and t are not connected, P(YES) = 0. Therefore we have one-sided error. If
x /∈ USTCON, we will never have an error in this case, and will always give the right answer.

If s and t are connected, we would be wrong if we answered, no. This would happen if we started at
s and took a random walk, and s and t are connected, but we did not see t in this random walk, even
though we went four times the cover time. So, the probability that we answered, no, is, at most, the
probability that we didn’t cover the graph in four times the cover time of G many steps. What is the
Cover Time? It is maximum over all starting points of the expected number of steps that we need to
take in order to cover the graph, which is, at least as large as, the expected number of steps we need
to take starting at s. So, starting at s, if we didn’t see t in four times the expected time, what is the
probability of that? Markov’s Inequality tells us that the probability is at most 1

4 .
Therefore, we showed that, if s and t are not connected, that this thing is never going to give you

the wrong answer, and, if s and t are connected, then the probability that we don’t see that they are
connected is at most 1

4 . If we wanted it to be at most 1
10 , we could run for ten times the cover time.

Markov’s Inequality is really the dumbest thing we can do. Instead we could do this a few times and
then use independence and get even better results.

3

What we just showed is that S-T Connectivity on undirected graphs is in random logspace. It is
actually in deterministic logspace, so we don’t actually need random walks, which leads us to the question
is L = RL? Hmmm, we don’t know. So that’s the big open question. This course is about when is
randomness useful, when is it helpful? We don’t even know the answer for L vs. RL. This is the big
open question. We used to think that USTCON ∈ L was the canonical problem and, if we could solve
this, then we’d be done, but this is not true. Next week we’ll show that USTCON ∈ L. It’s not just in
RL, it’s in L. This random walk thing was the first use of cover time and random walks in complexity
theory, which dates back to the early 80’s. The RL vs. L thing was a big result in 2004, so it was a few
years in-between, about twenty years in-between [3]. Then, everyone thought that was it, we’re going to
solve the problem fast, but that didn’t happen. Our best current result is RL ⊆ L3/2.

What we saw is an application for cover time. This is one reason that you would care about cover
time. There are a lot of reasons that you would care about cover time, there are a lot of reasons that
you would care about random walks, we’re about to see another one. But, before we look at another
reason that we care about random walks, we need to make some connections between linear algebra and
random walks, because it’s going to give us a nice way of talking about the next thing we care about in
random walks. We want to know not just how long it takes to cover the graph, but how long it takes to
get to the stationary distribution. We call that the mixing time. So, we take a random walk, when is it
that we expect to be at our stationary distribution? If we’re on a complete graph with self-loops, then,
after one step, we’re at a random node. So the mixing time there is 1; it’s great.

3 Random Walks and Linear Algebra

3.1 Eigenvectors and Eigenvalues

Definition 2 Eigenvectors and Eigenvalues — Given a linear operator T : V → V , where V is a vector
field over F , if there exists some nonzero v ∈ V and some λ ∈ F such that vT = λv, then v is a (left)
eigenvector of T and λ is its corresponding eigenvalue.

Definition 3 `p norm — For p ≥ 1 the `p norm of a vector v ∈ V is given by ‖v‖p = (
∑
i v
p
i)

1
p .

Theorem 1 Given a transition matrix P for an undirected graph (which is stochastic, real, and symmet-
ric, and, thus, doubly stochastic), there exists a (not necessarily unique) orthonormal basis of eigenvectors
v1, . . . , vn (so that vi · vj =

∑
k vi,kvj,k = δij), with corresponding eigenvalues 1 = λ1, λ2, . . . , λn ordered

in decreasing absolute value (so that 1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λn|) and v1 = n−
1
2 (1, . . . , 1).

Using this choice of vi’s, v1 is a scaled version of the stationary distribution, with ‖v1‖2 = 1, which
will be convenient for our purposes. We could have a chosen a different normalization for v1, for example
‖v1‖1 = 1, so that v1 = π. If {vi, }ni=1 are (left) eigenvectors of P with corresponding eigenvalues {λi}ni=1,
and α ∈ F , we have the following facts:

1. αP has (left) eigenvectors {vi, }ni=1 with corresponding eigenvalues {αλi}ni=1.

2. P+I
2 has (left) eigenvectors {vi, }ni=1 with corresponding eigenvalues {λi+1

2 }
n
i=1.

3. P k has (left) eigenvectors {vi, }ni=1 with corresponding eigenvalues {λki }ni=1.

4. For α 6= 0, {αvi, }ni=1 are (left) eigenvectors of P with corresponding eigenvalues {λi}ni=1.

5. If P is stochastic then ∀i|λi| ≤ 1.

Proof

1. vi(αP) = viαP = αviP = αλivi = (αλi)vi

4

2. vi
P+I
2 = 1

2 (viP + vi) = 1
2 (λivi + vi) = λi+1

2 vi

3. viP
k = viPP

k−1 = λiviP
k−1 = · · · = λki vi

4. (αvi)P = αviP = αλivi = λi(αvi)

5. λivi,j = (λivi)j = (viP)j =
∑
k vi,kPkj ≤

∑
k maxj(vi,j)Pkj = maxj(vi,j)

∑
k Pkj = maxj(vi,j).

Where we used Pij ≥ 0 in the inequality and
∑
k Pkj = 1 in the final equality. Correspond-

ingly, we also have λivi,j ≥ minj(vi,j). Therefore, minj(vi,j) ≤ λivi,j ≤ maxj(vi,j). If vi is
an eigenvector of P , vi 6= 0 and −vi is also an eigenvector of P with the same eigenvalue λi,
so, we may assume, without loss of generality, that maxj(vi,j) ≥ maxj(−vi,j) = −minj(vi,j),
which also implies maxj(vi,j) > 0, since vi 6= 0. Then, −maxj(vi,j) ≤ λivi,j ≤ maxj(vi,j) so
−maxj(vi,j) ≤ λi maxj(vi,j) ≤ maxj(vi,j) and |λi| ≤ 1.

We also note the following important fact:

Fact 2 If {vi}ni=1 is a basis for V , then, for any v ∈ V , there exist αi ∈ F such that v =
∑
i αivi. Fur-

ther, if {vi}ni=1 is an orthonormal basis then αi = v·vi, v =
∑
i (v · vi)vi, and ‖v‖2 =

(∑
i,j αiαj(vi · vj)

) 1
2

=(∑
i,j αiαjδij

) 1
2

=
(∑

i α
2
i

) 1
2 .

3.2 Random Walks and Mixing Times

Since we have an orthonormal eigenbasis {vi}ni=1, it means that we can take any vector and write
it as a linear combination of the eigenvectors. This will help us because it will allow us to talk about
what happens to a vector when we apply P to it a certain number of times. Say we take t steps, then
we apply P t, what happens to our vector?

What we want to talk about now, is the mixing time of a random walk. What we care about right
now is how long does it take us to reach the stationary distribution when we take a random walk and
that’s the mixing time. We don’t expect to actually reach the stationary state, we only want to reach
an approximation of it.

Definition 4 Mixing Time — Given an ε > 0, the mixing time, t(ε) of a Markov Chain P , with
stationary distribution π is the minimum t such that for any starting distribution π0, ‖π − π0P t‖1 < ε.

So, given some ε > 0, we want to know at what time we get ε close to π in `1 norm, how many steps
we need to take. We look at the worst possible starting distribution and at that worst possible one, we
take t steps and ask when π0, ‖π − π0P t‖1 < ε.

Definition 5 Rapid Mixing — We say a Markov Chain P is Rapidly Mixing if t(ε) is polynomial in
the number of nodes, n, and ε−1.

This is crazy. This is not what we were talking about before. This is much faster. Remember that we
said in the complete graph you mix in one step? That’s rapid mixing. But remember the lollipop graph
when the cover time was O(n3)? That’s not rapid mixing. You can make a lollipop graph, or something
like a lollipop graph, where everybody should be pretty much uniform; you can make it so it looks like
everyone is pretty much degree 2 and so everything should be close to uniform, so it means that you
pretty much need to see all the nodes in the graph. That is not rapid mixing. You need something
polynomial in the size of the graph, not polynomial in log the number of nodes, but polynomial in the

5

number of nodes. Rapid mixing is so much faster, it’s like exponentially faster than in the lollipop graph,
or the line, or any of those other graphs we saw last time, except for the complete graph.

These rapid mixing graphs, we are going to get these out of a hat, people are going to give these to
us and we are going to use them. Now here’s the cool thing, a random graph is rapid mixing, even a
random 3-regular graph is rapid mixing. So there’s a lot of rapid mixing graphs out there. When I say
a random graph, I mean that if I pick all the edges at random, it’s very likely to be rapid mixing. What
does this mean? It means that most graphs are rapid mixing. However, finding a specific graph that is
rapid mixing, is not always so simple. People have spent a lot of time on finding the best parameters,
but a random one does work. Most of them are good; finding an explicit one with all the right properties
is a little tougher, maybe sometimes a lot tougher, but that’s all right. This class is a theory class, so
we can just assume it exists.

3.3 Convergence to the Stationary Distribution

So, here’s the coolest thing. Given some transition matrix P , for an undirected, nonbipartate,
d-regular, connected graph and a starting distribution π0, whatever it is, if you take t steps, then
how far are you from the stationary distribution π? Remember that, for such a graph, the stationary
state π = n−1(1, . . . , 1), since an undirected graph has a symmetric transition matrix and so is doubly
stochastic. Actually, what we’re going to be interested is not the `1-norm, which we used to define
mixing time, but rather the `2-norm. Recall that, for an n-dimensional vector space V , for all v ∈ V ,
the inequality ‖v‖2 ≤ ‖v‖1 ≤ n

1
2 ‖v‖2 holds; we’ll use this later. Our theorem is:

Theorem 3 If P is the transition matrix of an undirected, nonbipartate, d-regular, connected graph and
π0 is any starting distribution, then ‖π0P t − π‖2 ≤ |λ2|t.

Why is this interesting? Because λ2 will be strictly less than 1. If λ2 is very close to 1, that’s not
good, but if λ2 is like .9, if we can get a graph where λ2 is .9, then the `2 distance between the starting
and stationary state will drop exponentially. If λ2 = 1 − n−1, then it’s not that good yet, but it will
be if we take a few more steps. So, it means that we need to take a number of steps that depends on
the separation of λ2 from 1. Now, people will often talk about the separation of λ1 and λ2 instead of
the separation of λ2 from 1. We happened to fix λ1 = 1, so for us, these are the same thing because we
set it this way, but when you hear other people talk it, they’ll talk about the distance between the top
two eigenvalues. Notice that if, λ2 = 1, like if we had a disconnected graph and had another eigenvalue
of size 1, then this tells us nothing, since 1t is still one. The value is not going down at all as we take
more steps, which we would expect, because in a disconnected graph, or a bipartate graph, things can
be pretty crazy. But when things are nice, when λ2 < 1, the `2 distance goes down exponentially. So
that’s cool, but even cooler is how we prove this.

So, we have our orthonormal eigenbasis {vi}ni=1 and we’ve started at π0. Using the orthonormal
basis, we can write π0 =

∑
i αivi. We’re not doing anything weird, we’re just using the fact that the vi’s

form an orthonormal basis so we can write any vector, including π0, as a linear combination of them.
If we take π0 and we multiply by P t, what do we get? Well, we get π0P

t =
∑
i αiP

tvi =
∑
i αiλ

t
ivi.

Do you see what we did here? This is a really cool trick. We took this thing, we wrote it in this new
basis, and then, when we apply P t, we can look at what happens to each component. Now, one of them
has λi = 1, the first one, so π0P

t =
∑
i αiλ

t
ivi = α1v1 +

∑n
i=2 αiλ

t
ivi = π +

∑n
i=2 αiλ

t
ivi, since λ1 = 1

and α1v1 = π, since, as t → ∞ all the other terms go to 0. Now, what do we have here? We want
to get this in terms of λ2. What we want to say is this: the λti’s are dropping, plus/minus, we don’t
know yet, but in absolute value they’re dropping, because λ2 is the second biggest eigenvalue, so all the
eigenvalues after λ2 have absolute value at most |λ2| because we sorted them. We want to say that we
can just replace them by λt2 modulo some absolute value issue that we’ll talk about in a minute. Then
π0P

t − π ≤
∑n
i=2 αiλ

t
2vi, which will give us the inequality that we want. More formally,

6

∥∥π0P t − π∥∥2 =

∥∥∥∥∥∑
i

αiλ
t
ivi − π

∥∥∥∥∥
2

=

∥∥∥∥∥α1v1 +

n∑
i=2

αiλ
t
ivi − π

∥∥∥∥∥
2

=

∥∥∥∥∥π +

n∑
i=2

αiλ
t
ivi − π

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=2

αiλ
t
ivi

∥∥∥∥∥
2

=

(
n∑
i=2

α2
iλ

2t
i

) 1
2

≤

(
n∑
i=2

α2
iλ

2t
2

) 1
2

= |λ2|t
(

n∑
i=2

α2
i

) 1
2

≤ |λ2|t
(

n∑
i=1

α2
i

) 1
2

= |λ2|t‖π0‖2 ≤ |λ2|t‖π0‖1 = |λ2|t · 1

= |λ2|t

so ‖π0P t − π‖2 ≤ |λ2|t, proving the theorem.
So, what do we do in our proof? We take the starting vector π0, which is arbitrary, but we can

write it in terms of the orthonormal eigenbasis {vi}ni=1. Then, when we apply the transition matrix, P ,
we can apply it to each component separately. All of the components, except for the first one, are all
dropping down to zero because their λi’s are strictly less than one. λ2 < 1 is the second largest, but all
the others are even smaller, so those components are dropping down very quickly. So, when we apply
P t, the λi’s are dropping down really fast, they become zero very quickly. So, everybody but the first
vector are all going down to nothing, very fast, exponentially fast, but the first guy, that’s what we’re
tending to. That’s our stationary distribution, that’s what we’re going to.

Now, what’s the issue? λ2 might be close to one so it might take us some time until we get to the
point before we start dropping down exponentially. λ2 might be something like 1 − n−1 or something
really close to one, so that might be an issue for us. But, if λ2 is a constant bounded away from one,
it will drop down exponentially and everything’s great. All the rest of the terms are just going right to
zero, very quickly, and that’s the cool thing about this. The linear algebra perspective gave us another
way to view these vectors and we could see what’s happening by applying the transition matrix. All
this arbitrary stuff is going away and we’re just going straight to the stationary distribution. It doesn’t
matter where we started, everything is going away. So that’s the cool thing here and why we like linear
algebra.

We’re going to use this next time to save randomness, in a different way from pairwise independent
hashing, which will be slightly better in some ways than pairwise independence.

7

References

[1] Nisan, Noam (1992),“RL ? S”, Proceedings of the 24th ACM Symposium on Theory of computing
(STOC ’92), Victoria, British Columbia, Canada, pp. 619623.

[2] Vadhan, Salil. Pseudorandomness. Foundations and Trends in Theoretical Computer Science Vol. 7,
Nos. 1-3 (2011) 1-336.

[3] O. Reingold and L. Trevisan and S. Vadhan. Pseudorandom walks in biregular graphs and the RL
vs. L problem, ECCC TR05-022, 2004.

8

