
6.842 Randomness and Computation October 1, 2017

Lecture 11
Lecturer: Ronitt Rubinfeld Scribe: Di-Chia Chueh

1 Today’s topic

• Reducing randomness via random walks on very nice graphs

• Analyzing random bits usage and upper-bounding error

2 Reduce error in randomized algorithm

Definition 1 For a decision problem L: given a randomized algorithm A with
one-sided error such that

1. ∀x ∈ L, Pr$[A(x) = 1] ≥ 0.99

2. ∀x /∈ L, Pr$[A(x) = 0] = 1

where $ denotes the coin toss, A(x) is the output when taking x as input (of size
n), and assume we need r ≡ r(n) random bits for algorithm A.

Goal Note that algorithm A has one-sided error only when input x is in the
language, with error probability of an arbitrary fixed constant. Without loss of
generosity here we pick the error to be 0.99 for the rest of our notes. Our goal
is to get an error of 2−k for some constant k. Possible methods include:

1. n naive way is to run algorithm A repeatedly for k times, output “x ∈ L“
if ever seen A accepts (stating x ∈ L), or else output “x /∈ L“. Note that
it requires O(k · r) bits, where r denotes number of bits A uses.

2. Previously (in lecture 4,5) we used pair-wise independence random strings,
which requires O(k + r) random bit.

3. We can leverage random walks to choose random bits to use.

Theorem 2 It requires only O(k) + r random bits in random walk method with
k steps. Thus in some case it’s better than pair-wise random bits method in
terms of random bits usage.

1

Method Number of random bits used
Initialize new random bits k times O(k · r)
Use pair-wise independence O(k + r)
Use random walk O(k) + r

Table 1: Comparison of required random bits

3 Reduce randomness via random walk

3.1 Algorithm and random bits analysis

Plan Our plan is to create a graph G (which is built to help select the random
strings; is independent of A), with every possible random bit string m ∈ {0, 1}m
associate with a node in G. Then picking several random strings is now equiv-
alent to picking several nodes in G. We can do random walk on G and decide
which random string to pick in each step.
All we need is to pick several strings with at least one of which is a good random
string, such that algorithm A will accept with that string when input is in L;
which now correspond to selecting several nodes with one of which is a good
node, that is, the code is associated with a good string.

Definition 3 Define graph G = (V,E) such that |V | = 2r, and such that G is d-
regular for some constant d, and that (undirected) G is connected, non-bipartite.
And we have transition matrix P for random walk on G such that P has a set
of eigenvalues satisfying λ2 ≤ 1

10 . We label each node a binary representation
of number in [0, 2r − 1] corresponding to each random string: s(v) ∈ {0, 1}r,
∀v ∈ V .

Observation 4 Now that G exists, we can find random neighbor in G in rea-
sonable time and O(log d) = O(1) random bits.

The algorithm With input x, we run the new algorithm A′ as follows:

1. Pick start node w in G, s(w) ∈ {0, 1}r.

2. Repeat k times:
w ←random neighbor of w;
run A(x) with random string s(w);
if A accepts (says “x ∈ L“), than outputs “x ∈ L“.

3. Otherwise output “x /∈ L“.

Random bits used:
r

k ·O(1)

Total: r +O(k)

3.2 Error analysis

Claim 5 Error of new algorithm A′ ≤
(
1
5

)k
for x ∈ L, while still has zero error

for x /∈ L (which is obvious).

Proof Idea We separate graph G into two regions, one with good nodes with
good string that will that A(x) answer correctly if x is in L; and the other
with bad nodes. The algorithm fails to answer correctly if the random walk are
always within the bad region (which is unlikely).

2

Definition 6 Let B ≡ {w|A(x) with random bits w is incorrect} be the set of
random strings in bad region, then define |V | × |V | diagonal (indicator) matrix
N with ∀w ∈ V , the s(w)-th diagonal element

Nw =

{
1, if w ∈ B
0 , otherwise

.

Proof Given any (|V |×1 vector) probability distribution q, we’d like to filter
out the probability mass on good locations and only retain the bad ones, i.e.
qN . When taking first-norm of the filtered vector, ‖qN‖1 = sum of the bad
probability = total probability at a bad code.
We can see that ‖qPN‖1 = probability starting at distribution q, take one step,
and landing at another bad node; ‖qPNPN‖1 = then taking another step and
still land at a bad code; thus ‖q(PN)k‖1 = probability of never see good codes
in k steps.

Lemma 7 ∀ vector π, ‖πPN‖2 ≤ 1
5‖π‖2. Note that it’s true for arbitrary π,

not necessary need to be stationary distribution.

Fact 8 ∀ vector p, ‖p‖1 ≤
√
p’s dimension size ‖p‖2.

Thus when we start with the uniform probability distribution p0, using previous
lemma and fact, we have

Pr[error] = ‖p0(PN)k‖1 ≤
√

2r‖p0(PN)k‖2 ≤
√

2r

5
‖p0(PN)k−1‖2

≤
√

2r

5k
‖p0‖2 =

√
2r

5k

√∑(
1

2r

)2

=

√
2r

5k
× 1√

2r
=

1

5k

, which means that using algorithm A′ we can reduce the one-sided error to 5−k,
while using O(k) + r random bits.

3.3 Finishing the Proof to Upper-bound the Error

Now the only thing left is to proof the inequality in the lemma, the decrease of
bad code probability that after one iteration of transition.

Linear Algebra Revisited First we set (orthonormal basis) v1,· · ·,v2r to be
eigenvectors of P corresponding to eigenvalues (in decreasing order) λ1,· · ·,λ2r ,
such that ‖v1‖2 = 1, and we have that v1 = 1√

2r
−→
1 (where

−→
1 is the all-one

vector). We assume π =
∑2r

i=1 αivi. We note the following two facts:

‖π‖2 =

√∑
i

α2
i ≥ |αj |,∀j (1)

∀w with vector elements wi, ‖wN‖2 =

√∑
i∈B

w2
i ≤

√∑
i

w2
i = ‖w‖2 (2)

3

Proof of Lemma 7 Now we have

‖πPN‖2 = ‖

(
2r∑
i=1

αivi

)
PN‖2 = ‖

2r∑
i=1

αiλiviN‖2 ≤

part A︷ ︸︸ ︷
‖α1λ1v1N‖2 +

part B︷ ︸︸ ︷
‖

2r∑
i=2

αiλiviN‖2

(3)
The inequality is due to triangular inequality. For part A,

‖α1λ1v1N‖2 = ‖α1v1N‖2 = |α1|‖v1N‖2 = |α1|
√∑
i∈B

(
1√
2r

)
= |α1|

√
|B|√

2r
=
|α1|
10
≤ ‖π‖2

10

(4)
where the first equality holds since λ1 = 1, the third equality holds due to
equation (2) and the value of v1, the fourth equality holds because we pick the
one-sided error to be 0.99; whereas the inequality holds from equation (1). For
part B,

‖
2r∑
i=2

αiλiviN‖2 ≤ ‖
2r∑
i=2

αiλivi‖2 =

√√√√ 2r∑
i=2

(αiλi)2 ≤
√∑

i α
2
i

100
=

1

10
‖π‖2 (5)

where the second inequality holds because eigenvalues λi ≤ 1
10 with ∀i ≥ 2;

whereas the last equality holds due to equation (1). Combining (4) and (5)

with (3), we have ‖πPN‖2 ≤ ‖π‖210 + ‖π‖2
10 = ‖π‖2

5 , and this complete the proof
of the lemma.

Putting everything together, we have shown a method to reduce randomness
via random walks on very nice graphs.

4

