
6.842 Randomness and Computation October 18, 2017

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: John Napp

1 Undirected S-T Connectivity in Deterministic Log-Space

We have previously seen how to solve Undirected S-T Connectivity in randomized log-space. In this
lecture, we will see a deterministic log-space algorithm for the problem. While the randomized algorithm
was shown in 1979, the deterministic algorithm wasn’t discovered until 2005 by Reingold. These notes
will not contain full details and proofs. For those, consult the original paper [1] or (for example) the
surveys in [2] or [3]. First, let’s recall the computational problem.

Computational Problem 1 Undirected S-T Connectivity. Given a graph G and two nodes s and t,
are s and t in the same component?

The high-level strategy for the deterministic algorithm will be to reduce the problem to an equivalent
problem in which the components of the input graph are good expanders. This reduction will be done
by performing operations on the original graph. These operations will be “local” in some sense, which
allow them to be performed on-the-fly using only logarithmic space. It will then be easy to describe
a deterministic log-space algorithm that determines the connectivity of s and t in this new, highly
expanding graph.

We will first recall some facts from spectral graph theory that we will need.

1.1 Graph theory facts

Definition 1 Call a graph G (N,D, λ) if it has N nodes, a maximal degree of D, and λ is an upper
bound on the second-largest absolute value of an eigenvalue of the transition matrix of G.

Now we recall a result relating the spectral expansion of a graph to its vertex expansion.

Theorem 2 (Tanner [4], Alon-Milman [5]) For all λ < 1, there exists an ε > 0 such that for every
(N,D, λ)-graph G and every subset S ⊂ G such that |S| < N/2, |N(S)| ≥ (1 + ε)|S|.

We will also need the fact that connected, non-bipartite graphs have spectral gap lower bounded by
1/poly(n) (the spectral gap is just defined as 1− λ). More formally,

Theorem 3 Let G be a connected, non-bipartite graph with degree D. Then

λ(G) ≤ 1− 1

DN2
.

1.2 A deterministic algorithm for expanders

Consider the case that the input graph G comes with the promise that each of its components is a
D-regular expander for some constant D, by which I mean the spectral gap of each component is lower
bounded by a constant. In this case, it is not hard to show that a deterministic algorithm for Undirected
S-T Connectivity exists. To see this, first note that the diameter of the components of such a graph
is O(logN). This is a consequence of Theorem 2. Now, we can solve the computational problem by
starting at node s and enumerating over all paths of length O(logN). Output “yes” if we ever see t, and
“no” otherwise. One can check that this can be done with O(logN) space.

Theorem 3 gives us an inverse-polynomial lower bound on the spectral gap of general input graphs,
but unfortunately it’s not strong enough to invoke the above result. However, our strategy will be to
perform operations on the input graph to transform it into a graph of the above form without changing
the connectivity of s and t, at which point we can invoke the above result.

Next, we review the graph operations we will need to use.

1

1.3 Graph operations

Recall that given an input graph G, we’d like to boost its spectral gap to Ω(1) while keeping its degree
constant and only increasing its size to at most poly(N). (We will see later that the degree of the input
graph can be assumed to be O(1) wlog.) There are essentially two primitives we will use for this purpose.
Powering will improve the expansion at the cost of increasing the degree. Taking a Zig-Zag Product
will greatly reduce the degree without making the expansion too much worse, at the cost of making the
graph larger. It turns out that by repeatedly applying these operations, we can turn any graph G into
a modified graph of size poly(N) whose components are expanders of constant degree, as desired.

1.3.1 Powering

If a graph G has associated transition matrix M , then Gk is defined to be the graph whose transition
matrix is Mk. So for example, squaring a graph corresponds to adding edges to next-nearest-neighbors.
It’s not too hard to show that if G is (N,D, λ), then Gk is (N,Dk, λk). Hence we see that powering
can exponentially suppress λ at the cost of exponentially increasing the degree. In the setting of our
problem, we see that raising the input graph to the O(logN) power will amplify the spectral gap to
O(1). Unfortunately, this causes the degree to become poly(N), which is unacceptable.

1.3.2 Replacement product

As a warmup for the zig-zag product that we will actually use, we first consider a related construction,
the replacement product r©. In the below construction, D should be thought of as much larger than d,
and H should be thought of as having good expansion.

Definition 4 (Replacement Product). Let G be a D-regular graph with N nodes, and let H be a d-
regular graph with D nodes. Then the replacement product of G and H, G r©H, is the graph constructed
as follows. Replace every vertex of G with a copy of H. Let Hv denote the copy of H corresponding to
v ∈ G. Place an edge from the ith node in Hv to the jth node in Hw if and only if w is the ith neighbor
of v in G, and v is the jth neighbor of w in G.

Clearly the resulting graph has ND nodes. We also see that it has degree d+ 1, since each node in
G r©H is connected to d nodes within its “cloud”, as well as one additional node in a different cloud.
Using this construction, the degree of the resulting graph will be d+ 1 regardless of how large D is. The
point of the construction is that the degree can be greatly reduced without making the expansion of the
original graph G too much worse.

As some intuition for this fact, say we are trying to find a cut in the graph which minimizes expansion
across the cut. If H is a good expander, we won’t want to break up the clouds Hv too much in trying
to do this minimization. On the other hand, if G is a good expander, then even keeping the clouds Hv

intact will lead to many edges across a given cut.
Here is another way to get intuition for this fact in terms of random walks. Say we start with some

distribution on the nodes of G r©H which is far from the stationary, uniform distribution, and we ask how
long it takes for the distribution to get close to uniform. If the starting distribution is far from uniform,
it must be the case that the distribution is unevenly distributed between the clouds, or the distribution
is far from uniform within each cloud. But the intra-cloud distributions will quickly approach uniformity
due to the expansion of H, and the inter-cloud distributions will quickly approach uniformity due to the
expansion of G. So a walk on G r©H should mix rapidly, which is associated with good expansion.

1.3.3 Zig-Zag product

The graph operation that we will actually use is a bit different than the replacement product, but similar
in spirit.

2

Definition 5 (Zig-Zag product). Let G be a D-regular graph with N nodes, and let H be a d-regular
graph with D nodes. Then the Zig-Zag product of G and H, G z©H, is a graph whose vertices are pairs
(u, i) ∈ [N]× [D]. For a, b ∈ [d], define the (a, b)th neighbor of (u, i) as follows.

Let i′ be the ath neighbor of i in H. Let v be the i′th neighbor of u in G. Define j′ to be the integer
such that u is the j′th neighbor of v in G. Let j be the bth neighbor of j′ in H. Then the (a, b)th neighbor
of (u, i) is defined to be (v, j).

Clearly the size of the resulting graph is ND, and the degree is d2. To get some intuition for this
construction, note that a random walk on G z©H corresponds to first taking a random step in H, then
taking a step in G corresponding to where we landed in H, then taking another random step in H. So
in a sense, a random walk on G z©H is like a modified random walk on G where the steps in G are
controlled by a random walk in H. If H is a good expander, we expect this modified random walk on G
to behave similarly to a random walk on G which chooses its next step uniformly at random. Hence, if
G and H both have good expansion, we expect the walk on G z©H to mix in time not much larger than
the time it takes a walk on G to mix, and so we expect G z©H to have good expansion. Note that we
need the second random step in H in the definition to ensure that if (v, j) is a neighbor of (u, i), then
(u, i) is a neighbor of (v, j) and hence the resulting graph can be defined as undirected.

From this intuition and the arguments in the previous section concerning the closely-related replace-
ment product, we suspect that if G and H are good expanders, then G z©H is still a pretty good expander
despite the (potentially very large) reduction in degree. More precisely,

Theorem 6 If α ≤ 1/2, G is (N,D, λ), and H is (D, d, α), then G z©H is (N · D, d2, λG z©H) where

λG z©H ≤ 2
3 + λ

3 .

1.4 Main transformation

Now we put together the pieces. We will need the following fact.

Theorem 7 For some constant D, there exists a (D16, D, 12)-graph.

Let H denote the (D16, D, 12)-graph in the above theorem, and let G denote the input graph. We
assume that G is D16-regular. This is wlog, because we can do preprocessing on G to put it into this
form. For example, we can increase the degree by adding self-loops. To decrease the degree, we could
replace a high-degree vertex by a cycle of vertices which have the proper degree.

Let G0 be the preprocessed input graph. Now define Gi ← (Gi−1 z©H)8. It is easy to check that all
Gi have degree D16. Recall that powering exponentially suppresses λ, while taking the Zig-Zag product
doesn’t change it by much. Each component of G0 has λ = 1 − 1/poly(N). Hence, we need to iterate
this procedure l = O(logN) times to make each component of Gl have λ = O(1). Further, one can check
that this transformation preserves the connected components of G. Finally, note that the size of the
final graph is N ·D16l = poly(N). Hence, we have reduced the problem to the case discussed in Section
1.2, which we know how to solve deterministically.

Of course, in order for this to work in log-space, it must be possible to perform all of the transfor-
mations “on-the-fly”! We leave it to the reader to convince themself that this is indeed possible.

References

[1] O. Reingold, “Undirected connectivity in log-space,” Journal of the ACM, vol. 55, no. 4, pp. Art 17,
24, 2008.

[2] S. Arora and B. Barak, “Computational complexity: a modern approach,” Cambridge University
Press, 2009.

3

[3] S. Vadhan, “Pseudorandomness,” Now Publishers Inc., 2012.

[4] M. R. Tanner, “Explicit concentrators from generalized N-gons,” SIAM Journal on Algebraic Discrete
Methods, vol. 5, no. 3, pp. 287?293, 1984.

[5] N. Alon and V. D. Milman, “Eigenvalues, expanders and superconcentrators,” in Annual Symposium
on Foundations of Computer Science, pp. 320–322, Singer Island, Florida, 24–26 October 1984.

4

