
6.842 Randomness and Computation October 25, 2017

Lecture 14
Lecturer: Ronitt Rubinfeld Scribe: Aviv Adler

This lecture covers an application of Szemeredi’s Regularity Lemma to testing whether a graph is triangle-
free in constant time (though the constant involved is pretty nuts).

From Last Time

We recall some things we did in Lecture 13 which will be useful. As a notational convention, whenever
we write something like k := k(ε), this just means “k is (only) dependent on ε”.

Definition 1 (γ-Regularity) If G = (V,E) is a graph and A,B ⊆ V (and disjoint), then the pair
(A,B) is γ-regular if, for every A′ ⊆ A, B′ ⊆ B such that |A′| ≥ γ|A| and |B′| ≥ γ|B|,∣∣d(A,B)− d(A′, B′)

∣∣ ≤ γ
where d(X,Y ) is the density of edges from X to Y , i.e. d(X,Y ) = |E(X,Y )|

|X||Y | .

Theorem 2 (Lots of Triangles) For any η > 0, there exists δ := δ4(η) and γ := γ4(η) such
that for any G = (V,E) with partition A,B,C of V where

• each pair in A,B,C has density > η

• A,B,C are pairwise γ-regular

there are at least δ · |A| · |B| · |C| distinct triangles (u, v, w) in G where u ∈ A, v ∈ B,w ∈ C.

Additionally, this holds for γ = η/2 and δ = η3/16

Theorem 3 (Szemeredi Regularity Lemma) For all m and ε > 0, there exists T := T (m, ε)
such that, given G = (V,E) where |V | > T (and an equipartition A of V into m sets) then there
exists equipartition B of V into k subsets V1, . . . , Vk such that:

• m ≤ k ≤ T ;

• at most ε
(
k
2

)
of the pairs Vi, Vj of subsets are not ε-regular;

• (and B refines A).

Note that k is upper-bounded by T , which has no dependence on n := |V |. This means for a sufficiently
large graph, we can represent it as a collection of k subsets between which the edges “look” random
(except for an ε-fraction of the pairs).

1 The 4-Free Problem

We now want to find an algorithm which can take a graph G = (V,E) – represented as an adjacency
matrix (so input size n2) – and determine whether it is 4-free. Of course, to solve this problem exactly
means reading more-or-less the entire input and so will take Ω(n2) time (in fact, we can prove that at

least 2
(
n/2
2

)
= Θ(n2) entries must be checked, because we can partition V into two equal sets V1, V2 and
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have an edge (u, v) for all u ∈ V1, v ∈ V2 – and then every edge within a part would result in a triangle
being completed).

Instead, we want to test 4-freeness with some margin of error: if G is really 4-free we should know; if
G is far (in some sense – see Definition 4) from being 4-free, we should know that it’s not 4-free; and
if it is neither then either output is acceptable (if we find it’s not 4-free, this is okay because it isn’t,
but if we find it is 4-free that is also okay because it almost is).

Definition 4 (ε-Far) Let G be a graph given in adjacency-matrix format (so input size is n2). Then
G is ε-far from 4-free if there is no way to add or delete ≤ εn2 (an ε fraction of the input size) to get
a 4-free graph G′.

Since 4-free is a monotonic property (adding new edges cannot make G triangle-free), we are only
concerned with deleting edges.

We also note that if we want to deterministically solve the approximation described above, we would
still need Ω(n2) queries; we instead want a randomized algorithm. Specifically:

Problem 1 (4-Free, Approximate) Given graph G in adjacency-matrix form (which can be queried),
we want an algorithm A which does the following:

• if G is 4-free, A(G) (always) returns pass;

• if G is ε-far from 4-free, A(G) returns fail with constant probability (specifically, not dependent
on n);

• if G is neither of the above, A(G) is allowed to return either pass or fail.

The most obvious algorithm is to start querying random triplets of vertices; if we find a 4 we output
fail, and if we go for a while without finding a 4, we output pass.

2 The 4-Free Tester

Our testing algorithm does the following where δ := δ(ε) (the exact dependence to be described later):

Given graph G = (V,E) (as adjacency matrix) and ε > 0, do δ−1 times:

• pick u, v, w ∈ V uniformly at random;

• if 4u,v,w (i.e. u, v, w are vertices of a triangle in G), return fail

If above loop ends without fail, then return pass

If G is 4-free, then of course it will never find a 4 and so it is guaranteed to return pass. Therefore
we are only concerned with what happens if G is ε-far from 4-free. So we want to show:

Theorem 5 (ε-Far = Lots of 4s) For any ε > 0, there exists δ := δ(ε) > 0 such that if G is ε-far
from 4-free, then G has at least δ

(
n
3

)
distinct 4s.

It’s easy to see that this implies that the algorithm has a constant probability of returning fail if G
is ε-far from 4-free. This is because each sampling of vertices has at least a δ chance of finding a 4, and
we apply it δ−1 times. Therefore, the probability that we do not find a 4 is at most (1 − δ)δ−1 ≥ 1/4
(really, for small δ this is basically e−1). Therefore, we have the corollary:
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Corollary 6 (Algorithm Works!) The testing algorithm given solves Problem 1.

We now prove Theorem 5.

Proof We apply Szemeredi’s Regularity Lemma with the following parameters:

• m = 5/ε, and

• ε′ = min(ε/5, γ4(ε/5)) = ε/10 (where γ4 is as defined in Theorem 2).

This gives us an equipartition of V into k subsets V1, . . . , Vk (so each part has n/k vertices) such that:

• 5/ε ≤ k ≤ T (5/ε, ε′), which implies that

εn

5
≥ n

k
≥ n

T (ε/5, ε′)
(1)

• at most ε′
(
k
2

)
pairs of subsets are not ε′-regular.

Since our goal is to wind up in a position to apply Theorem 2, what we need are three parts Va, Vb, Vc
such that (i) they are pairwise regular and (ii) the edges between any pair are dense (i.e. the η is
sufficiently large). To show the existence of such Va, Vb, Vc, we “clean up” G by removing edges (which
obviously can only reduce the number of triangles) to obtain G′ where edges only exist between pairs of
parts which are dense and regular. In particular, we make the following removals:

1. remove all edges within any part Vi:

This removes at most
(
n/k
2

)
≤ 1

2

(
n
k

)2
edges from any given part Vi, and there are k parts, so at

most n2

2k ≤
εn2

10 edges in total are removed.

2. remove all edges between any pair of parts Vi, Vj which are not ε′-regular:

At most ε′
(
k
2

)
≤ ε′k2

2 pairs of parts are not ε′-regular; and between each pair there are at most(
n
k

)2
edges. So since ε′ ≤ ε/5 (we can plug in the ε/10 here but no need), at most ε′n2

2 ≤ εn2

10 edges
in total are removed.

3. remove all edges between any pair of parts Vi, Vj whose density d(Vi, Vj) ≤ ε/5:

Between any pair of parts there are
(
n
k

)2
possible edges; having density at most ε/5 means that

at most ε
5

(
n
k

)2
of them are actually edges. And there are at most

(
k
2

)
≤ k2

2 pairs of parts, so the

number of edges removed is at most ε
5

(
n
k

)2 k2
2 ≤

εn2

10 .

Therefore, the total number of edges removed by this “cleanup” is at most 3ε
10n

2 < εn2. But since G is
ε-far from 4-free, this means that the new graph G′ still has a triangle somewhere.

Because we removed all edges within parts, the vertices of this triangle must be in three distinct
parts Va, Vb, Vc; because we removed all edges between non-regular pairs, Va, Vb, Vc must be pairwise
ε′-regular; and, finally, since we removed all edges between pairs of parts which had density ≤ ε/5, each
pair in Va, Vb, Vc must have density more than ε/5.

Therefore, we can apply Theorem 2 with G′′ being graph induced by Va ∪ Vb ∪ Vc on G′ (i.e. we just
retain those vertices and all edges within them) and with the parameter η = ε/5, so that ε′ = γ4(η).
Note that η depends only on ε, so δ′ depends only on ε. The theorem then gives that the number of
triangles in G′′ is at least

δ4(ε/5) · |Va| · |Vb| · |Vc| = δ4(ε/5)(n/k)3 ≥
( δ4(ε/5)

T (ε/5, ε′)3

)
n3

Since G′′ is made by deleting vertices from G′, which is the original graph G minus some edges, we know

that G has at least this many triangles as well. So, setting δ = δ4(ε/5)
T (ε/5,ε′)3 , which depends only on ε, we

have completed our proof.
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Addenda

A few minor additional things.

Small G (or “g”)

The proof of Theorem 5 does depend on G having at least T (ε/5, ε′) vertices, which is am unrealistically
gigantic number. What happens if it is smaller?

But if it is smaller, then its size is upper-bounded by a constant so we can just run an algorithm which
checks all triplets of vertices for triangles. This is technically also constant-time, even if the constant is
ridiculous. So we have a constant-time algorithm for both “small” and “large” G.

Can we make the run-time of 4-free testing sane?

While the result shows the4-free testing algorithm runs in constant time regarding the size of the graph,
the constant is extremely large and not really practical. It turns out that T (ε/5, ε′) (where ε′ = ε/10 as
we saw) is basically a (1/ε)-height tower of twos, e.g. 222

...

; and then our algorithm basically tells us to
take this many samples (cubed).

It is known that no constant-time (with regards to the size n of the graph G) algorithm for Problem 1
exists which is only polynomially dependent on 1/ε. But it’s not known whether something as awful as
a tower of twos is really needed; perhaps there’s some algorithm which only requires O(21/ε) samples or
something. If so, the algorithm (or at the very least the proof that the works algorithm) would probably
have to be not dependent on Szemeredi partitions, as the number of Szemeredi partitions needed to
make this argument work is known to be basically this tower-of-2’s.

Either finding a better constant-time algorithm or proving stronger lower bounds would be a good
open problem.
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