6.842 Randomness and Computation

September 11, 2017

Lecture 2: Lovász Local Lemma and Moser-Tardos Algorithm Lecturer: Ronitt Rubinfeld Scribe: Yuancheng Yu

1 Lovász Local Lemma

Definition 1 (independence). An event A is *independent* of $\{B_1, \ldots, B_k\}$ if for any nonempty $J \subseteq [k]$,

$$\Pr[A \cap \bigcap_{j \in J} B_j] = \Pr[A] \Pr[\bigcap_{j \in J} B_j].$$

Definition 2 (dependency digraph). Let V = [n]. The dependency digraph D = (V, E) of events A_1, \ldots, A_n is defined such that if node *i* has outgoing edges to j_1, \ldots, j_d , A_i is independent of $\{A_j \mid j \in [n] \setminus \{j_1, \ldots, j_d\}\}$.

Theorem 3 (symmetric Lovász Local Lemma). Let A_1, \ldots, A_n be events such that $\Pr[A_i] \leq p$ for all i, and their dependency graph has max degree d. If $\operatorname{ep}(d+1) \leq 1$, then $\Pr[\bigcap_{i=1}^n \bar{A}_i] > 0$.

In other words, we can view A_i as the bad events, and there is a nonzero probability that none of them occur if $p \leq \frac{1}{e(d+1)}$. Unlike the union bound, this depends on d but not n. Below we describe its applications and the Moser-Tardos algorithm, which can be considered as a constructive proof.

2 Application to Two-Coloring

Theorem 4. Let $S_1, \ldots, S_m \subseteq S$ with $|S_i| = l$, and S_i intersects at most d other S_j 's. If $e(d+1) \leq 2^{l-1}$, S can be two-colored such that each S_i is not monochromatic.

Proof. Color each element of S as black or white each with probability 1/2. Let A_i be the event that S_i is monochromatic, which occurs if and only if its l elements are all black or all white, i.e.,

$$p = \Pr[A_i] = 2^{-l} + 2^{-l} = 2^{1-l}.$$

Since A_i is dependent on A_j if and only if S_i intersects S_j , and S_i intersects at most d other S_j 's, the dependency graph of A_1, \ldots, A_m has max degree d. Since

$$ep(d+1) = e2^{1-l}(d+1) \le 1,$$

by Lovász Local Lemma $\Pr[\bigcap_{i=1}^{n} \bar{A}_i] > 0$, i.e., S can be two-colored such that each S_i is not monochromatic.

3 Moser-Tardos Algorithm

Theorem 5. Let $S_1, \ldots, S_m \subseteq S$ with $|S_i| = l$, and S_i intersects at most d other S_j 's. If $ce(d+1) \leq 2^{l-1}$ for some constant c > 1, S can be two-colored such that each S_i is not monochromatic in expected O(poly(m, l)) time.

3.1 Algorithm

The algorithm is simple and intuitive: assign each element either color with probability 1/2, and while there is some monochromatic S_i , reassign either color to each element of S_i with probability 1/2.

The algorithm is correct as long as it terminates. Below we bound its expected runtime.

3.2 Runtime Analysis

To facilitate the analysis, we define the *log of execution* and the *witness trees*, and finish the analysis in next lecture.

Definition 6. The log of execution is an sequence of pairs $(1, S_{r_1}), (2, S_{r_2}), \ldots$, where S_{r_j} is the recolored set in the *j*-th loop of the algorithm.

Definition 7. The witness tree T_j for loop j begins with root T_{r_j} , and for t = j - 1, j - 2, ..., 0, if S_{r_t} intersects some node in the current T_j , add S_{r_t} to be a child of some node that intersects S_{r_t} such that it has maximum depth. (If there are multiple choices, pick one arbitrarily).