The Lovász Local Lemma

Another way to argue that "nothing bad happens"

If $A_1 \ldots A_n$ are bad events

how do we know if there is positive probability that none occur?

usual way: Union bound

\[\Pr[\bigcup A_i] \leq \sum \Pr[A_i] \]

no assumptions on A_i's w.r.t. independence

if each A_i occurs with prob p, then need $p < \frac{1}{n}$ to get anything interesting (i.e. sum ≤ 1)

if A_i's independent + "nontrivial":

\[\Pr[\bigcup A_i] \leq 1 - \Pr[\bigcap \overline{A_i}] \]

\[= 1 - \prod \Pr(\overline{A_i}) > 0 \]

What if A_i's have "some" independence?

\[\text{def } A \text{ "independent" of } B_1 \ldots B_k \text{ if } \forall J \subseteq [k] \]

\[\Pr[A \cap \bigcap_{j \in J} B_j] = \Pr[A] \cdot \Pr[\bigcap_{j \in J} B_j] \quad J \neq \emptyset \]
def. $A_1 \ldots A_n$ events

$D \equiv (V; E)$ with $V = [n]$ is

"dependency digraph of $A_1 \ldots A_n"$

if each A_i independent of all A_j that don't
neighbor it in D (i.e., all A_j st. $(i, j) \notin E)$

Lovász Local Lemma (Symmetric version)

$A_1 \ldots A_n$ events st. $\Pr(A_i) \leq p \ \forall i$

with dependency digraph D s.t. D is of degree $\leq d$.

If $e(d + 1) \leq 1$ then

$$\Pr[\bigwedge_{i=1}^{n} \overline{A_i}] > 0$$

Application:

Thm. $S_1 \ldots S_m \subseteq S$, $|S_i| = l$, each S_i intersects at most d other S_j's

before $m \leq 2^{l-1}$

now m not restricted

if $e(d + 1) \leq 2^{l-1}$ then can 2-color S st. each S_i not mono chromatic

ie. H is a hypergraph with m edges,

each containing l nodes + each intersecting $\leq d$ other edges
\textbf{Prop.}\color{red}{^1}

color each elf of S red/blue with prob $\frac{1}{2}$ iid.

A_i: event that S_i monochromatic

$\Pr[A_i] = 2^{-(d-1)}$

A_i ind of all A_j st. $S_i \cap S_j = \emptyset$

depends on $\leq d$ other A_j

Since $e(p(d+1)) = e \frac{1}{2^{d-1}} (d+1) \leq 1$

\textit{LLL} \Rightarrow exists a -coloring \hfill \Box

\textbf{Comparison:}

\begin{align*}
\# \text{ edges} &= m \\
\text{size of edge} &= d
\end{align*}

\begin{align*}
\# \text{ edges} &= m \\
\text{size of edge} &\geq d
\end{align*}

\begin{align*}
\text{each edge interacts} \\
\leq d \text{ others}
\end{align*}

\begin{align*}
d + 1 &\leq \frac{2^{d-1}}{e} \\
\text{no dependence on } m
\end{align*}

\textbf{A second application:}

Given CNF formula st. d vars in each clause

$e \frac{(d+1)}{2^{d-1}} \leq 1$

there is a satisfying assignment
How do you find a solution?

Partial history:

Lovász 1975
non-constructive
(no fast algorithm to find soln)

Beck 1991
randomized algorithm
but for more restrictive conditions
on parameters

Moser 2009
negligible restrictions for SAT
" " " most problems

Moser Tardos

Then given $S_1, \ldots, S_m \subset S$

each S_ℓ intersects $\leq d$ other S_ℓ‘s

if $e(d+1) \cdot C \leq 2^d$,
then can find 2-coloring of S' s.t.
each S_ℓ not monochromatic
in time poly in m/d
Algorithm

- Color all els of \mathcal{P} randomly (iid, uniform)

- While there is a monochromatic set S_i:
 - Pick arbitrary "violated" S_i
 - Randomly reassign colors to elements of S_i

Correctness: trivial ✓

Runtime: How many re-colorings? * see Q2

To analyze, define "witness tree" to explain why a certain event happened.

def. "log of execution" is a set of pairs $(i, s_i)(2, s_{i2})$...
where first entry is a "loop" number and second entry s_{ij} is the set resampled at jth loop.

e.g. $(1, s_1) (2, s_2) (3, s_3) (4, s_4) (5, s_5) ...$
How many recolorings?

What independence properties do we have?

If $S_i \cap S_j = \emptyset$ then whether they are monochromatic is independent at all times.

If $S_i \cap S_j \neq \emptyset$ but, consider $\Pr[S_i \text{ 2-colored at time } t]$ and $\Pr[S_j \text{ 2-colored at time } u]$ such that there was a recoloring of $S_i \cap S_j$ at time $t < v < u$ then also independent!

Model as tree:

Recolorings of S_i recolorings of connected component in this tree
Log: (1, B) (2, D) (3, A) (4, C) (5, E)

Example time 0

Time 1
- (1, B) resample edge

Time 2
- (2, D) resample D

Time 3
- (3, A) resample A

Time 4
- (4, C) resample C

Time 5
- resample E
A plan:

Show that for any "long" log, it is unlikely to happen.

Then

$$\Pr[\text{any long log occurs}] \leq (\# \text{ long logs}) \cdot (\text{max prob of a long log})$$

union bound

but need to be a bit more elaborate, may be show:

$$\Pr[\text{a log longer than size } t_0]$$

$$\leq \sum_{b > t_0} (\# \text{ logs of length } b) \cdot (\text{Prob of log of length } b)$$

still too many of these to do naively

Plan here:

Focus on point of view of each set $$S_i$$

- how labellings can evolve
 - not too many ways due to locality
 - each big one has low probability
def: "witness tree for step j" ($j \geq 0$)

is constructed as follows

- root vertex labelled by S_{ij}

- go backwards thru \log^3

- do for step j, $j-1$, $j-2$, ...

- if edge relabeled at current step t
 shares any nodes with edges already
 in witness tree,

any S_{ij} can be added many
times to witness tree

\Rightarrow

add S_{it} to witness tree
by making it point to
arbitrary node on witness tree
which is at max distance
from root

In our example:

- witness tree for time 1:

 witness tree for time 2:

 witness tree for time 3:

 time 4:

 time 5:

 time 6:
How do we bound probability of specific witness tree Υ in a run?

To analyze prob of tree Υ, upper bound via "Υ-check" procedure

i.e. ensure that:

- prob Υ occurs as a witness tree
- \leq prob Υ-check passes

Def. Υ-check procedure:

- Visit nodes of Υ in reverse BFS order (max depth first)
- take random evaluations of vars in current set
- check that set is monochromatic (violated)
- pass if all checks are violated

<table>
<thead>
<tr>
<th>Vars</th>
<th>resampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial settings</th>
</tr>
</thead>
</table>

Important Point

Prob of violation $= 2^{-|E|} \equiv p$
Observe:

- If 2 sets at same level in tree,
 cant intersect! (by construction)
 \[\Rightarrow \text{independent} \quad \text{(i.e., order of coin tosses doesn't matter)} \]

- If 2 sets at different levels,
 will resample & get totally new bits

\[\Rightarrow \text{before later set} \Rightarrow \text{independent} \]

Note that we consider reverse BFS.

\[\Pr [\gamma \text{-check passes}] \leq \rho^{|\Gamma|} \]
\[= \left(2^{-(d-1)} \right)^{|\Gamma|} \]

How to use the γ-check?

1) Prob of getting tree somewhere in log
 \[\leq \text{prob of } \gamma \text{-check passing} \]

2) No tree occurs twice in log.
 (has to have previous tree as subtree!)

3) So, expected length of log
 \[= \text{expected } \# \text{ of distinct trees in log} \]

\[\gamma \text{ generality } \# 1 \]

\[\gamma \text{ trees consistent with by: We are bounding prob of any of them} \]
\[(\text{i.e., sum}) \]

\[\gamma \text{ generality } \# 2 \]
\[\gamma \text{ some of distinct trees can't even happen in our input, we are not a lot unirandom, more } \gamma \text{ happen} \]
Expected # of resamplings

\[E[\# \text{ resamples}] = \sum_{\text{roots } T \text{ without } i} \sum_{\text{T rooted at } i} E[X_T] \text{ in execution of an algorithm} \]

where \(X_T = \begin{cases} 1 & \text{if } T \text{ occurs in} \\ 0 & \text{o.w.} \end{cases} \)

\[= \sum_{\text{roots } T} \sum_{T \text{ rooted at } i} E[X_T] \]

\[= m \sum_{s=1}^{\infty} \sum_{|T| = s} E[X_T] \]

\[\leq m \sum_{s=1}^{\infty} \left(\frac{sd}{s-1} \right) p^s \]

\[\leq m \sum_{s=1}^{\infty} \left((d+1)e \right)^s p^s \]

since \(p < \frac{1-\epsilon}{e(d+1)} \) this is geometric sum \(\Theta(1) \)

\[\text{if } p < \frac{1}{2e(d+1)} \text{ then goes down exponentially } \]

\[\therefore E[\text{runtime}] = E[\# \text{ resamples}] \times \text{ time per resample} \]

is \(\text{ poly } (m, \ell, d) \)
Why?
How many labelled rooted trees of size s?

describe via Eularian tour (left→right):
write 1 if go down
0 if skip child
(2 for "pop up" is redundant)
then, each node contributes d bits
String is $\leq sd$ characters with $s-1$ 1's
$\leq \left(\frac{sd}{s-1}\right)$ such strings
$\leq \left(\frac{ed}{s-1}\right)^{s-1} \propto (ed)^{s-1}$ by Stirling's approx

Example

A d children

$0, 1000, 1000$

B

$s = 3$

\Rightarrow

$1000, 1000, 0$

skip A's kids

skip B's kids

go to B

go to C

skip C's kids

skip B's kids

skip A's kids