
6.842 Randomness and Computation Nov 27, 2017

Lecture 22
Lecturer: Ronitt Rubinfeld Scribe: Suhas S Kowshik

1 Weak vs Strong Learning

In this and the subsequent lecture we show how weak learning implies strong learning. First we recall
the definitions:

Definition 1 Algorithm A strongly PAC learns a concept class C if ∀c ∈ C, for every distribution D
on the input, ∀ε, δ > 0, given examples of c according to D, with probability at least 1 − δ, A outputs
hypothesis h such that PD[h(X) 6= c(X)] ≤ ε.

Definition 2 Algorithm A weakly PAC learns a concept class C if ∀c ∈ C, for every distribution D on
the input, ∃γ > 0 such that ∀δ > 0, given examples of c according to D, with probability at least 1 − δ,
A outputs hypothesis h such that PD[h(X) = c(X)] ≥ 1

2 + γ
2 .

Notice that in the definition of weak learning, we do not have control over the parameter γ. Hence
it is weaker than strong learning where we can learn to any accuracy (1− ε).

Our goal is to prove the following theorem:

Theorem 3 If concept class C can be weakly learned on any D then it can be strongly learned.

To prove this theorem, we introduce a technique called boosting.

2 Boosting

2.1 Intuition

Suppose we have a weak learner A for a concept class C. First idea could be to use this learner multiple
times on the same distribution D, and then take majority of the hypotheses predicted each time. But
repeated trials can only help boost confidence δ, but not the accuracy. For example, if each time, the
hypothesis is same h, then repeating and taking majority wouldn’t help.

The next idea could be to do repetition but an intelligent one! So what we could is to run the weak
learner on those samples where the previous hypotheses failed to predict correctly. More formally, if
the hypothesis in first stage is c1 based on the samples {(xi, c(xi))}mi=1 from D (where m is the samples
needed by A), then we query more samples (xm+1, c(xm+1)), ... but use only those samples for which
c(xj) 6= c1(xj). Thus we filter out the samples, and this induces a new distribution D1 on the input. We
use these filtered samples to get an hypothesis c2. But then how do we continue and at the end, what
is our hypothesis?

The boosting technique use majority of the hypotheses for filtering at each stage, and the final output
is also the majority of all the hypotheses seen so far. But there are some modifications required to the
filtering process which is discussed later.

2.2 Algorithm

Suppose we are given samples from D labelled according to c and weak learner (WL) A

• Stage 0: D0 ← D. Run WL on D0 to generate hypothesis c1 such that PD0
[c(x) = c1(x)] ≥ 1

2 + γ
2 .

1

• For stage i = 1...T , where T = O(1
γ2ε2)

– Stop ifMaj(c1, .., .ci) is correct on 1−ε/2 fraction of the input w.r.tD, and outputMaj(c1, .., .ci).
This can be done by taking samples from D and checking how many fail. We use ε/2 here to
account for error due to sampling.

– Using c1, c2, ..., ci, construct Di using some ”filtering” procedure.

– Run WL filtered samples (according to Di) to get hypothesis ci+1 such that PDi
[c(x) =

ci+1(x)] ≥ 1
2 + γ

2

• Output C∗ = Maj(c1, ..., cT).

Next, we describe the filtering procedure.

2.3 Filtering

Given c1, ..., ci and a new labelled sample (x, c(x)):

• If Maj(c1, ..., ci)(x) 6= c(x) then keep (x, c(x)).

• Let #right be the number of correct predictions of x among c1, ..., ci and let #wrong be the
number of incorrect predictions. If #right−#wrong ≥ 1

γε then discard x.

• Else if #right−#wrong = α
γε for 0 < α < 1, then keep x with probability 1− α.

As a remark, we must ensure that the WL gets enough samples after filtering. That is, the
sample complexity shouldn’t blowup. But notice that we enter the filtering stage only if PD[c(x) 6=
Maj(c1, ..., ci)(x)] > ε. Hence atleast one out of O(1/ε) samples will pass through the filter with high
probability.

In the next section we introduce some notations which are useful in proving the correctness of the
boosting algorithm.

3 Notations

For each i, define the correctness of a prediction ci on x as

Rci(x) =

{
+1 if ci(x) = c(x)

−1 if ci(x) 6= c(x).

Let Ni(x) = #right−#wrong after i steps:

Ni(x) =
∑

1≤j≤i

Rci(x).

Define a measure Mi(x) as

Mi(x) =


1 if Ni(x) ≤ 0

0 if Ni(x) ≥ 1
γε

1− εγNi(x) otherwise.

Let distribution DMi
be defined as

DMi(x) =
Mi(x)D(x)∑

y∈{+1,−1}n Mi(y)D(y)
.

2

So, this distribution coincides with the distribution Di described in the algorithm.
From now on, we assume that D is the uniform distribution. Hence

DMi
(x) =

Mi(x)∑
y∈{+1,−1}n Mi(y)

.

We also define the advantage of a prediction c̃ over Mi:

Advc̃(Mi) =
∑
x

Rc̃(x)Mi(x).

Hence we have

PDi
[c̃(x) = c(x)] =

1

2
+

Advc̃(Mi)

2
∑
xMi(x)

.

We will continue the proof in the next lecture.

3

