
6.842 Randomness and Computation December 6, 2017

Lecture 25
Lecturer: Ronitt Rubinfeld Scribe: Jennifer Tang

1 Amplifying Hardness: Yao’s XOR Lemma

Goal: To “amplify hardness” by taking any slightly hard function (worst case hard function) f and turn
it into a new actually hard function (average case hard function) f∗.

How will we do this? By showing that if a function is not hard in the average case, we can solve it
in the worst case.

1.1 Yao’s XOR lemma

Here’s an example to understand the intuition behind Yao’s XOR lemma: Suppose you have a δ-biased
coin where the probability of heads is 1− δ (suppose δ ≤ 1

2).

• We can correctly predict the result of one coin flip with probability 1− δ (by guessing heads)

• We can correctly predict the result of k coin flips with probability (1− δ)k (by guessing all heads)

• If we were asked to guess the parity of k coin flips (odd parity if there is an odd number of heads),
we can correctly predict the parity with probability ≈ 1

2 + (1− 2δ)k. This approaches 1
2 as k goes

to infinity.

What we want to do is apply this not to coin flips, but to the function f . This is not so straightforward.

1.2 Plan

Note that this topic deals with functions on circuits as opposed to functions on Turing machines. Fix a
class of circuits. The overall plan is to show:

Function f is wrong on some fraction δ of inputs for any circuit
⇓ (using boosting)

There exists a measure where f is wrong on almost 1
2 fraction of inputs with any circuit

⇓ (using probabilistic argument)
There exists a subset of inputs such that f is wrong on 1

2 the inputs with any circuit
⇓ (using Yao’s XOR lemma)

There exists a function f∗ which is wrong on almost 1
2 of all inputs with any circuit

We have amplified hardness by significantly increasing the proportion of inputs any circuit is wrong
on.

1.3 Several Definitions

Definition 1 Function f : {±1}n → {±1} is δ-hard on distribution D for size g if for any Boolean
circuit C with less than g gates

PrD[C(x) = f(x)] ≤ 1− δ .

In other words, f is δ-hard if there is always an error on at least δ fraction of inputs given by distribution
D. For example, if D is uniform on binary n bit inputs, a function f is δ-hard for δ = 2−n if more than
one input always gives the wrong answer for any circuit. If f is δ-hard for δ = 1

2 , then no circuit does
better than randomly guessing the function. In such a case, we can always set C(·) = 1 or C(·) = −1.

Our goal is to find a function and distribution pair, (f,D), which is δ-hard on approximately 1
2 of

the inputs under distribution D.

1

For the next definition, recall

Advx(M) =
∑
x

Rc(x)M(x)

where

Rc(x) =

{
+1 if C(x) = f(x)

−1 if C(x) 6= f(x)

Definition 2 If Advc(M)∑
xM(x) ≤ ε for every circuit C with less than g gates, then f is ε-hardcore on M

for size g.

Note that the condition Advc(M)∑
xM(x) ≤ ε is equivalent to PrM [C(x) = f(x)] ≤ 1

2 + ε
2 (where the probability

is taken over the measure given by M).

Definition 3 Let S ⊆ {±1}n, then f is ε-hardcore on S for size g if for every circuit C of size at
most g is such that Pr[C(x) = f(x)] ≤ 1

2 + ε
2 where the probability measure is uniform on the elements

in set S.

We have defined these terms so that we can show for every hard function f , there is a hardcore
function on the set S ⊆ {±1}n.

1.4 Several Theorems: Hard functions have hardcore measure

Theorem 4 Suppose f is a δ-hard function for the uniform distribution for size g. Let 0 < ε < 1.

Then there exists a measure M such that µ(M) =
∑

xM(x)

#x ≥ δ such that f is ε-hardcore on M for size

g′ = 1
4ε

2δ2g.

The proof of this theorem is given by boosting. Notice how the size of the circuit grows by a similar
constant used in boosting.

Proof Given f , suppose there is no measure M that meets the condition of the theorem. Then,
for every M such that µ(M) ≥ δ, there is a circuit of size g′ with Advc(M) ≥ ε. Let this circuit be the
“weak learner” in the boosting argument.

We can take the majority of the 1
ε2δ2 circuits of size g′. The output of each of the circuits of size

g′ is feed into one large majority gate which produces the final answer. By boosting, this predicts f
with error less than δ. The total size of the circuit is 1

ε2δ2 g
′ + o(1

ε2δ2) = 1
ε2δ2

1
4ε

2δ2g + o(1
ε2δ2) < g. This

implies that f cannot be δ-hard for circuits of size g.

Using a probabilistic argument, we can get that if there is an ε-hardcore measure M for size g′ where

2n < g < ε2δ2

8
2n

n then there exists a 2ε-hardcore set S for f of size g where |S| ≤ δ2n.
The following theorem (or lemma rather) shows that if there is hardcore set then there is a function

(a different one) which is hard to predict on all of the domain. The new function is created by taking a
combination of XOR’s of the original function.

Lemma 5 (Yao’s XOR lemma) Given f which is ε-hardcore for set H of size greater than δ2n for
size g + 1, the function

f⊕k(x1, ..., xk) = f(x1)⊕ f(x2)⊕ ...⊕ f(xk)

is ε+ 2(1− δ)k-hardcore for size g on the whole domain.

2

Before we present the actual proof, we will provide an idea which is key to the proof. This idea does not
work on its own, but it helpful for understanding the proof.

Assume the theorem is not true. Then there exists a circuit C with less than g gates, which that

Prx1,...,xk
[C(x1, ..., xk) = f⊕k(x1, ..., xk)] ≥ 1

2
+
ε

2
+ (1− δ)k .

Here is a way to use f⊕k to determine f : Given an input x, let x1 = x. Let the rest of the inputs
into f⊕k each equal the zero vector, that is x2 = 0, ..., xk = 0. Let b = ⊕ki=2f(0), then

f(x) = f⊕k(x, 0, ..., 0)⊕ b .

We can create a circuit for f(x) by using C(x, 0, ..., 0)⊕ b. If

Pr[f(x) = C(x, 0, ..., 0)⊕ b] > 1

2
+
ε

2

then we have a contradiction. The only problem here is that while C(x1, ..., xk) approximates f(x1, ..., xk)
well on 1

2 + ε
2 + (1 − δ)k of the inputs, setting the inputs x2, ..., xk to zero vectors might not be one of

the instances which C(x1, ..., xk) is correct for. The proof below uses this idea but fixes this issue by
evaluating on a better choice of x2, ..., xk.

Proof Let Am be the event that exactly m of x1, ..., xk are in H. Note that

Prx1,...,xk
[A0] ≤ (1− δ)k .

The event A0 are instances which have no xi in H, so these are not “hard” to evaluate on. If we condition
on not getting A0, we must have

Prx1,...,xk
[C(x1, ..., xk) = f⊕k(x1, ..., xk)| ∪m>0 Am] >

1

2
+
ε

2
.

By averaging, we know that there is one i > 0 where

Prx1,...,xk
[C(x1, ..., xk) = f⊕k(x1, ..., xk)|Ai] >

1

2
+
ε

2
.

With this value of i, the procedure is that given any x ∈ H, compute f(x) by

1. Picking x1, ..., xi−1 ∈ H randomly

2. Picking yi+1, ..., yk ∈ H̄ randomly

3. Picking a random permutation π of (x1, ..., xi−1, x, yi+1, ..., yk)

Prx1,...,xk
[C(π(x1, ..., xi−1, x, yi+1, ..., yk)) = f⊕k(π(x1, ..., xi−1, x, yi+1, ..., yk))] >

1

2
+
ε

2
.

By averaging, there exists a specific choice of π, x1, ..., xi−1, yi+1, ...yk and a bit b = ⊕i−1j=1f(xj)⊕kj=i+1

f(yj) so that

Prx∈H [f(x) = C(π(x1, ..., xi−1, x, yi+1, ..., yk))⊕ b] ≥ 1

2
+
ε

2
.

We will create the circuit for predicting f by hardcoding C with the choices of variables x1, ..., xi−1, yi+1, ...yk,
the permutation π, and the bit b. The size of this circuit is less than g + 1, so f is not ε-hardcore for
size g + 1 for on the set H.

3

