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Lecture 3
Lecturer: Ronitt Rubinfeld Scribe: Albert Cheu

1 Introduction
In this lecture, we complete the Moser-Tardos algorithm. Specifically, we prove the following:

Theorem 1 Suppose we have set system Si,S3,55 ... S, C S where for any i, |S;| = £ and S; intersects
at most d other sets. If ce(d+ 1) < 271 for constant ¢ > 1, then Moser-Tardos finds a coloring of S
without a monochromatic S; in expected time poly(m,d, |S|).

We will use the “log of execution” and “witness tree” terminology defined in the prior lecture notes.
We note that a node of a witness tree can be written as a log element (time,T) € Z x {S1...Sn}.
We will make reference to “(fair) coins” which will be the sources of randomness of each event.

2 Proof

2.1 The 7-check and associated facts

We define a procedure that will not be executed but will be useful for analysis, in much the same way
witness trees are useful abstractions.

Definition 2 Suppose tree T has nodes that each correspond to a log element (t,S[t]) € Zx{S1...Sm}.
For our purposes, we assume the elements of S are initially uncolored. The T-check procedure is the
following:

1. Traverse T reverse BFS order: For each S[t]. ..

(a) Use fair and new coins to color uncolored elements of S[t].
(b) Assign monoy to 1 if the set is monochromatic, 0 otherwise.

(¢) Use fair and new coins to recolor S|t]

2. Pass if all monoy are 1, fail otherwise.
In 7, let M; be the event that mono; = 1.
Claim 3 All M; are independent of one another.

Proof Consider some t, S[t]. M; is independent of all My where S[t] N S[t'] = 0; the argument below
is therefore “interesting” for overlapping sets.

monoy = 1 if and only if all of S[t]’s elements are the same color at the beginning of step ¢.

If some of the elements are uncolored going into step ¢, the coloring that happens in (a) is independent
of any other coloring: the coins are new and independent of any prior flips.

If some of the elements have already been colored, the colors will be from some prior execution of
step (¢). That uses coins independent of any prior flips.

We showed that mono; = 1 is independent of prior flips. The coloring that (c) will “overwrite” the
colors of S[t] so mono; = is independent of future flips. W

Claim 4 When 7 has size s, Pr(r-check passes) = 275(¢=1)



Proof This follows immediately from Claim 3 and the fact that |S;| = ¢ for all given S;. B

Claim 5 Pr(7 is a witness tree) < Pr(r-check passes)

Proof Record onto list C' the coin flips from a run of Moser-Tardos that has witness tree 7. Let
(t,S[t]) be a node in that tree.

Consider a 7-check procedure where instead of flipping new coins, we read off from C in the following
manner. In step (a), the coin for an uncolored element u come from the most recent ¢ < t where
u € S[t']. In step (c), we look at the coins used to recolor S[t] at the end of round ¢ of Moser-Tardos.

7 consists of log elements. We log (¢, S[t]) only when S[t] is monochromatic just before the recoloring
at time ¢. Thus each mono; = 1 and the 7-check passes.

Because the number of coin assignments that make the 7-check pass is at least the number of coin
assignments that make 7 a witness tree, Pr(7 is a witness tree) < Pr(r-check passes). B

2.2 Other facts

Lemma 6 The number of potential witness trees T with root S; and size |T| = s is at most (s(sdjll))

Proof Note: Taken from scribe notes of Spring ’14.

For every given S}, fix an order of the sets that intersect with S; including itself. The order is denoted
Si... Sf[J]. By assumption, the degree bound is d so k[j] < d + 1.

Every parent-child pair in 7 shares at least one element.

No child is duplicated; the second instance to be added to 7 ought to be at a lower level.

Run BFS from the root S; with queuing order Sjl» e S;-C[j]. Let Sy(1) - - Su(s) denote the sequence of
sets visited.

Define table T, with s rows and d+ 1 columns. The bit in row = and column y will indicate whether
Sfj’(m) is a child of S, ) in 7. Because there are k[v(x)] possible children, cells in row 2 beyond column
y = k[v(x)] are set to 0.

There are s — 1 edges in a tree with s nodes, so there are s — 1 1-bits. Because no two witness trees
have the same table, the number of witness trees is at most the number of such tables. l

Observation 7 As a consequence of the witness tree construction rules, no witness tree is duplicated.

Observation 8 From the above, a bound on the expected number of distinct witness trees is equal to the
expected log length.

2.3 Bound on expected log length

From the above,

Expected log length = Z Z E[no. of times 7 is a witness tree]
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From Claims 4 and 5,
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From Lemma 6,

<m Z(e(d +1))*27s¢=D
s=1

By the assumption in Theorem 1, this is a geometric sequence so
=0(m)

Each step of the log corresponds to a recoloring which takes poly(m, d, |S|) time. Thus, in expectation,
the running time is polynomial.



