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1 Introduction

In this lecture, we complete the Moser-Tardos algorithm. Specifically, we prove the following:

Theorem 1 Suppose we have set system S1, S2, S3 . . . Sm ⊂ S where for any i, |Si| = ` and Si intersects
at most d other sets. If ce(d + 1) ≤ 2`−1 for constant c > 1, then Moser-Tardos finds a coloring of S
without a monochromatic Si in expected time poly(m, d, |S|).

We will use the “log of execution” and “witness tree” terminology defined in the prior lecture notes.
We note that a node of a witness tree can be written as a log element (time, T ) ∈ Z× {S1 . . . Sm}.

We will make reference to “(fair) coins” which will be the sources of randomness of each event.

2 Proof

2.1 The τ-check and associated facts

We define a procedure that will not be executed but will be useful for analysis, in much the same way
witness trees are useful abstractions.

Definition 2 Suppose tree τ has nodes that each correspond to a log element (t, S[t]) ∈ Z×{S1 . . . Sm}.
For our purposes, we assume the elements of S are initially uncolored. The τ -check procedure is the
following:

1. Traverse τ reverse BFS order: For each S[t]. . .

(a) Use fair and new coins to color uncolored elements of S[t].

(b) Assign monot to 1 if the set is monochromatic, 0 otherwise.

(c) Use fair and new coins to recolor S[t]

2. Pass if all monot are 1, fail otherwise.

In τ , let Mt be the event that monot = 1.

Claim 3 All Mt are independent of one another.

Proof Consider some t, S[t]. Mt is independent of all Mt′ where S[t] ∩ S[t′] = ∅; the argument below
is therefore “interesting” for overlapping sets.

monot = 1 if and only if all of S[t]’s elements are the same color at the beginning of step t.
If some of the elements are uncolored going into step t, the coloring that happens in (a) is independent

of any other coloring: the coins are new and independent of any prior flips.
If some of the elements have already been colored, the colors will be from some prior execution of

step (c). That uses coins independent of any prior flips.
We showed that monot = 1 is independent of prior flips. The coloring that (c) will “overwrite” the

colors of S[t] so monot = is independent of future flips.

Claim 4 When τ has size s, Pr(τ -check passes) = 2−s(`−1)
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Proof This follows immediately from Claim 3 and the fact that |Si| = ` for all given Si.

Claim 5 Pr(τ is a witness tree) ≤ Pr(τ -check passes)

Proof Record onto list C the coin flips from a run of Moser-Tardos that has witness tree τ . Let
(t, S[t]) be a node in that tree.

Consider a τ -check procedure where instead of flipping new coins, we read off from C in the following
manner. In step (a), the coin for an uncolored element u come from the most recent t′ < t where
u ∈ S[t′]. In step (c), we look at the coins used to recolor S[t] at the end of round t of Moser-Tardos.

τ consists of log elements. We log (t, S[t]) only when S[t] is monochromatic just before the recoloring
at time t. Thus each monoi = 1 and the τ -check passes.

Because the number of coin assignments that make the τ -check pass is at least the number of coin
assignments that make τ a witness tree, Pr(τ is a witness tree) ≤ Pr(τ -check passes).

2.2 Other facts

Lemma 6 The number of potential witness trees τ with root Si and size |τ | = s is at most
(
s(d+1)
s−1

)
Proof Note: Taken from scribe notes of Spring ’14.

For every given Sj , fix an order of the sets that intersect with Sj including itself. The order is denoted

S1
j . . . S

k[j]
j . By assumption, the degree bound is d so k[j] ≤ d+ 1.

Every parent-child pair in τ shares at least one element.
No child is duplicated; the second instance to be added to τ ought to be at a lower level.

Run BFS from the root Si with queuing order S1
j . . . S

k[j]
j . Let Sv(1) . . . Sv(s) denote the sequence of

sets visited.
Define table Tτ with s rows and d+ 1 columns. The bit in row x and column y will indicate whether

Syv(x) is a child of Sv(x) in τ . Because there are k[v(x)] possible children, cells in row x beyond column

y = k[v(x)] are set to 0.
There are s− 1 edges in a tree with s nodes, so there are s− 1 1-bits. Because no two witness trees

have the same table, the number of witness trees is at most the number of such tables.

Observation 7 As a consequence of the witness tree construction rules, no witness tree is duplicated.

Observation 8 From the above, a bound on the expected number of distinct witness trees is equal to the
expected log length.

2.3 Bound on expected log length

From the above,

Expected log length =
∑
Si

∑
τwith
rootSi

E[no. of times τ is a witness tree]

From Claims 4 and 5,

≤ m
∞∑
s=1

∑
τwith
rootSi

|τ |=s

2−s(`−1)
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From Lemma 6,

≤ m
∞∑
s=1

(
s(d+ 1)

s− 1

)
2−s(`−1)

≤ m
∞∑
s=1

(e(d+ 1))s2−s(`−1)

By the assumption in Theorem 1, this is a geometric sequence so

= O(m)

Each step of the log corresponds to a recoloring which takes poly(m, d, |S|) time. Thus, in expectation,
the running time is polynomial.

3


