
6.842 Randomness and Computation September 25, 2017

Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: Leo de Castro

1 Interactive Proof Systems

An interactive proof system is a protocol that defines an interaction between two machines, a prover
and a verifier. For this model, we will consider verifiers that run in polynomial-time. The verifier will
have access to random coins, which for now we will consider private. The prover, on the other hand, is
unbounded in time and space. Without loss of generality, we can consider the prover to be a deterministic
machine.

The prover and the verifier have a shared input x, and the prover attempts to convince the verifier
that x ∈ L for some language L. After the interaction with the prover, the verifier will output Accept
if it believes that x ∈ L or Reject if it outputs x /∈ L. From this, we can define an interactive proof
system and the corresponding complexity class of languages with these proof systems.

Definition 1 Interactive Proof Systems (IPS) [Goldwasser, Micali, Rackoff]

A language L has an Interactive Proof System if there is a protocol for an interaction between a
polynomial-time verifier V and an unbounded prover P such that if V and P both follow the protocol
and x ∈ L, the probability that V outputs Accept is at least 2

3 .

Pr[V (x) = Accept | x ∈ L] ≥ 2/3

Note that this probability is taken over the random coins of the verifier. These proof systems must also
meet a soundness condition such that if x /∈ L and the verifier V follows the protocol, regardless of what
the unbounded prover P does, the probability that the verifier rejects is at least 2

3 .

Pr[V (x) = Reject | x /∈ L] ≥ 2/3

This probability is also taken over the random coins of the verifier.

Definition 2 The complexity class IP

A language L is in the class IP if it has an Interactive Proof System.

It is clear that the class NP ⊂ IP , since the prover P can always just send the short witness that x
is in the language, which can be checked in polynomial time by the verifier.

It is also the case that IP = PSPACE, which is much less obvious and will not be proved here. It
is also a fact that PSPACE is closed under compliment. In order to illustrate the power of IPS, we will
construct an interactive proof for graph non-isomorphism.

2 Graph Non-isomorphism

Graph isomorphism is in NP , so it is also in IP . Since IP = PSPACE, which is closed under
compliment, we know that there exists a IPS for graph non-isomorphism. We will first consider an IPS
were the verifier’s random coins are private.

The input to this protocol is two graphs G and H, both with n nodes. The verifier is supposed to
output Accept if G 6∼= H and output Reject if G ∼= H. The protocol proceeds as follows, which is looped
a constant number of times:

1



1. V uses its private random coins to compute a graph G′ that is isomorphic to G and a graph H ′

that is isomorphic to H.

2. V then flips a coin to decide whether to send (G,G′) or (G,H ′) to the prover.

3. P returns a bit indicating the result of coin flipped by V in step 2.

To better illustrate this protocol, here is a table of possible response and action combinations.

Coin Flip Result Correct Response if G 6∼= H P response V output

H ∼= ∼= Continue
H ∼= 6∼= Reject and Stop
T 6∼= ∼= Continue
T 6∼= 6∼= Reject and Stop

The only way that the prover can (consistently) determine the result of the coin flip is if the prover
can distinguish between G′ and H ′. If G is not isomorphic to H, then H ′ is not isomorphic to G, so the
prover will always by able to determine whether it was sent (G,G′) or (G,H ′) by simply testing if the
second graph is isomorphic to G. Therefore, if the two graphs are not isomorphic and the prover and
the verifier both follow the protocol, the prover can always determine the result of the coin flip.

However, if G and H are isomorphic, the G′ and H ′ are statistically indistinguishable, since they are
equivalent up to isomorphism. Therefore, the prover cannot distinguish between (G,G′) and (G,H ′)
better than random guessing. More formally, let q be the fraction of random permutations π such that
the prover outputs that (G, π(G)) are not isomorphic. For a given round of the protocol, we have the
probability that the prover fails to pass the challenge is:

Pr[Prover fails the round] =
1

2
q +

1

2
(1− q) =

1

2

This probability is over the graphs produced by the verifier, since both G′ and H ′ are permutations of
G. Since the prover cannot do better than random guessing when G ∼= H, repeating the loop above
twice will result in the following probabilities:

Pr[V (G,H) = Accept | G 6∼= H] ≥ 3/4

Pr[V (G,H) = Reject | G ∼= H] ≥ 3/4

This is sufficient to satisfy the IPS requirements, so this completes the construction of our private-coin
IPS for graph non-isomorphism.

3 From Private Coins to Public Coins

In our IPS protocol above, it is crucial that the verifier’s private coins are not revealed to the prover,
otherwise the prover could always cheat and know how G′ and H ′ were generated. However, in an
amazing result by Goldwasser and Sipser, public coin IPS are just as powerful as private coin IPS

Fact 3 Public Coin IP = Private Coin IP

Here, we will begin to construct a public coin IPS for graph non-isomorphism. We will not finish here.
Consider the set [A] = {A′|A ∼= A′}, which is the set of all graphs that are isomorphic to A. For any

graph A with n nodes, the size of [A] is n!. For two graphs A and B, the union U = [A] ∪ [B] will have
a size of n! if A ∼= B and 2n! if A 6∼= B. What we need is an ISP that gives some indication of the size
of U .

2



In order to do this, we should first consider the universe of all graphs with n nodes Zn. The size of
Zn is 2n

2

, which is the number of ways that n nodes can be connected. It is not sufficient to simply test
random graphs to get a sample of the size of U , since the fraction n!

2n2 is far too small for a polynomial
time verifier to sample random graphs.

Instead, the verifier can pick a pairwise independent hash function that maps a space of size 2n
2

to
a space of size 2l. The criteria that should be met by this hash function is:

1. |h(U)| is big if and only if |U | is big.

2. |h(U)|
2l

is 1
poly(n) .

3. h is computable in polynomial time.

The public coin protocol will proceed as follows:

1. Given H, a collection of pairwise independent hash functions mapping {0, 1}n2 → {0, 1}l, V
randomly selects a function h from this family and sends h to P .

2. P sends to V a graph x ∈ U such that h(x) = 0l along with a proof that x ∈ U .

We will show next time that if the graphs A and B are not isomorphic, then with high probability
the image of the union [A] ∪ [B] = U in the hash function will contain 0l. If A is isomorphic to B, then
this occurs with low probability.

3


