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1 Stationary distribution

Suppose, we have a Markov chain. It begins with the probability distribution over states π(0), and at
time t, this distribution equals π(t). As we have seen in the previous lecture:

π(t) = π(0)P t

Where P is the transition matrix.

Definition 1 Suppose after starting in some initial probability distribution π(0), as the time goes to
infinity, the probability distribution converges to some π. We call π a stationary distribution.

If the Markov chain is in a stationary distribution, the probability distribution should remain constant
as time progresses, and therefore, it should hold that:

π(y) =
∑
x

π(x)P (x, y)

Theorem 2 Every ergodic Markov chain has a unique stationary distribution.

We do not prove this in class. Various textbooks on probability theory contain a proof of this statement.

As a special case, suppose we have an undirected graph with vertices v1, v2,...,vn. It is easy to check
that:

π =

(
deg(v1)

2|E|
,
deg(v2)

2|E|
, ...,

deg(vn)

2|E|

)
is a stationary distribution.
This also implies that a d-regular graph has a uniform stationary distribution. This result can be

generalized in the following ways:

• A directed graph, for which every vertex has an in-degree and out-degree d has a uniform stationary
distribution.

• A doubly stochastic Markov chain also has a uniform stationary distribution.

This is not true for graphs in general. Furthermore, as we mentioned if the graph is k-partite, it will
not have a stationary distribution.

2 Characteristic times

2.1 Definitions

Definition 3 The hitting time hij between two, not necessarily different vertices, is the expected amount
time it will take to visit vertex j for the first time after starting at vertex i. For the case i = j we take
the first time it gets back after leaving the initial vertex.

Theorem 4 For any ergodic Markov chain the hitting time hii = 1
π(i) . Where π is the stationary

distribution.
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Again, the proof can be found in probability textbooks.

Definition 5 The commute time Cij between two vertices i and j is the expected amount of time for
the Markov chain to start at i, go to j and come back to i.

From linearity of expectation, it follows that Cij = hij + hji.

Definition 6 The cover time Cu(G) from vertex u is the expected amount of time, after which a Markov
chain that starts at u will visit every single vertex in G.

Definition 7 The cover time CG of the whole graph is the largest of all the cover times from each of
the vertices.

2.2 Examples

1. k∗n is the undirected complete graph with n vertices, which also has self loops from every edge to
itself. Cover time problem for this graph is identical to the coupon collector problem: suppose
there are n possible coupons and every time we collect a coupon, we receive one at random. In
expectation, after receiving how many coupons, will we collect each coupon at least once? The
answer to this question is Θ(nlog(n)), and so is the cover time of our graph.

2. The line graph. It has n vertices arranged in a line, and there are edges between all the neighbors
in the line. The cover time is Θ(n2). Intuitively, roughly, we expect our Markov chain to come
back to the starting leftmost vertex n times before it finally reaches the rightmost vertex. See
Feller for more details.

3. The lollipop graph can be constructed by taking a n/2-vertex line graph end replacing the last
vertex in it by a n/2-vertex clique. The cover time is θ(n3). Again, intuitively it is similar to the
line graph, but every time our Markov chain reaches the clique, it gets ”stuck” there, so the cover
time is by a factor of n worse than that for the line graph. Again, more information can be found
in Feller.

2.3 Upper bound on the cover time.

Theorem 8 The cover time of a graph G is less than or equal to O(mn). Where, as always, m is the
number of edges and n is the number of vertices.

Proof First of all, let’s add self loops to each vertex, so that the Markov chain has a 1/2 probability
of staying at vertex v after making a transition from it. For that, we add to a vertex v a number of
self-loops equal to the number of edges connected to v.

Now, our Markov chain has to be ergodic, since it is aperiodic and we assume it was irreducible in
the first place. Furthermore, the cover time will increase at most twice, because in expectation only one
half of all of the time steps will be spent on the self-loops.

Lemma 9 Suppose there is an edge between vertices i and j. Then the commute time between the
vertices i and j: Cij is O(m).

Proof First of all, suppose we are given that the Markov chain has just completed a transition from
i to j. Let t be the amount of time, it spends in expectation to complete a transition from i to j again.
Since it is a Markov process, its behavior does not depend on the the states it was in the past, so if it
starts at j, it will in expectation take exactly as much time to go to i and to j again, as it will if we are
also given that before it started at j it came there from i. Therefore Cij ≤ t.

Now, lets construct the line graph:
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Definition 10 The line graph is the graph G′ for which:

• The set of vertices V ′ is the set of all transitions allowed in the original graph, e.i. if there is an
edge between vertices i and j, the transitions (i, j) and (j, i) will be in the line graph. We will
have only one transition for each of the self-loops.

• The set of edges E′ will contain all the pairs of transitions that can happen consecutively, e.i.
between (i, j) and (j, k) there will be an edge.

The line graph has a very useful property: it is doubly stochastic. To show this, let’s calculate the
column sum. If (u, v)(v, w) ∈ E′, we have Q(u,v)(v,w) = 1

dv
. The column sum is equal to:∑

(u,v):(u,v)(v,w)∈E′

Q(u,v)(v,w) =
∑

(u,v)∈E

1

dv
= 1

Which means that this Markov chain is indeed doubly stochastic. Therefore, it has a uniform
stationary distribution π(u) = 1

4m . Which means that the hitting time huu = 1
π(u) = Θ(m).

Therefore, if we start by making a transition (u, v) in expectation we need only Θ(m) steps to see
(u, v) again, which, by the argument we made before is an upper bound on Cuv. Therefore Cij = O(m).

Now, let’s start at a vertex v0. Because of the connectivity, there has to exist a a spanning tree T
that is rooted at v0.

Let’s complete a depth-first traversal of the graph, so we keep track of each vertex twice: once when
we firs explore it and the second time when we backtrack from it. We will have a sequence of vertices:

v0, v1, ..., v2n−2

We have

C(G) ≤
2n−3∑
j=0

hvjvj+1

We know that Cij = hij + hji, so

C(G) ≤
∑

(u,v)∈T

Cuv = O

 ∑
(u,v)∈T

m

 = O(mn)

.
This proves our theorem.

3


