Lecture 4:

Distributed Algorithms

vs.

Sublinear time Algorithms:

the case of vertex cover
Given: "sparse" graph max degree Δ
adjacency list representation

Vertex Cover

$V' \subseteq V$ is a "vertex cover" (VC) if

$\forall (u, v) \in E$
either $u \in V'$ or $v \in V'$

What is min size of VC?

star
$\|V_c\| = 1$

k-clique
$\|V_c\| = k - 1$

n-cycle (n even)
$\|V_c\| = \frac{n}{2}$

Degree $\leq \Delta$ graphs:
can we get a better bound?

$\|V_c\| \geq \frac{m}{\Delta}$
since each node can cover $\leq \Delta$ edges
Complexity of V.C.:

- NP-complete to solve exactly
- poly time to get 2-approx
- sublinear time multiplicative approx?

 - graph with no edges: |V| = 0 mult approx must return 0
 - graph with 1 edge: |V| = 1 mult approx must return > 0

 distinguishing requires \(\Omega(n) \) queries

- sublinear time additive approx?

 hard!

 computationally hard to estimate to better than 1.36 (maybe even 2)

 \(\Rightarrow \) additive even harder

 additive \(\Rightarrow \) super good mult approx

- Combination?
Additive + Multiplicative approx error:

\[\text{def } \hat{y} \text{ is } (\alpha, \varepsilon) - \text{approximation of soln value } y \text{ for a minimization problem if } y \leq \hat{y} \leq \alpha y + \varepsilon \]

(analogous defn for maximization problems)
Some background on distributed algorithms:

- Network
 - processes
 - links

- Communication round:
 - nodes perform computation on
 - input bits
 - random coins
 - node IDs
 - history of received messages
 - nodes send msgs to neighbors
 - nodes receive msgs from neighbors

- def Vertex Cover for distributed network:
 - network graph = input graph
 - goal: at end, each node knows if it is in or out of VC
 (don't need to know about other nodes)
Main insight on why fast distributed algorithms run sublinear time:

- In k-round distributed algorithm, output of node v only depends on nodes at distance K from v.

- Can sequentially simulate v's view of distributed computation with $\leq d^k$ queries to input, and figure out if v is in or out of V.

Only Δ^k nodes in ball of radius k from v.

Diagram:
- G as a graph with nodes and edges illustrating the concept of distance k from v.
 - Nodes connected by edges showing dependencies.
 - A set of nodes marked as within the ball of radius k from v.
 - Markers indicating Δ^k nodes in the ball.
Simulating v's view of k-round distributed computation:

Round 1:
- Each node sends msg based on input & random bits
- Each node gets msg from each nbr which is based on nbr's input, random bit

Round 2:
- Each node sends msg based on input & random bits
- Each node gets msg from each nbr which is based on nbr's input, random bit & their round msgs from round 1

Fast distributed algorithm, we can simulate & get oracle which tells us if v is in V,c.
How do you use this to approx V.C. in sublinear time?

Parnas-Ron Framework:

Sample nodes $V_1 \ldots V_r$

for each V_i, simulate distributed algorithm to see if $V_i \in V.C.$

Output $\frac{\# V_i's \ in \ V.C.}{r}$

Query Complexity:

$O(r \cdot \Delta^{k+1}) \approx O\left(\frac{1}{\varepsilon^2} \Delta^{k+1}\right)$

Approximation guarantee?

Same approx error of distributed alg +
Chernoff/Hoeffding bounds $\Rightarrow \varepsilon n$ additive error
But: Are there fast distributed algorithms for V.C.?

YES!!

Here is one (not the best but simple) [Parnas & Ron]

\[i = \text{round(iteration #)} \]

\(i \leftarrow 1 \)

While edges remain:

- remove nodes of deg \(\geq \frac{\Delta}{2^i} \) + adjacent edges

- update degrees of remaining nodes

- increment \(i \)

Output all removed nodes as V.C.

rounds: \(\log \Delta \)
\[i = 1 \]

While edges remain:

- remove nodes of \(\deg \geq \frac{\Delta}{2^i} \) + adjacent edges
 - put these in \(\text{V.c.} \)
 - already covered
- update degrees of remaining nodes
- increment \(i \)

Output all removed nodes as \(\text{V.C.} \).

Example:

\[\Delta = 16 \]

Removed nodes placed in \(\text{V.C.} \),

(\(\text{blue}, \text{purple}, \text{green} \)) Removed nodes placed in \(\text{V.C.} \),

(\(\text{clear} \)) other nodes are not in output \(\text{V.C.} \).
\(i = 1 \)

\begin{itemize}
 \item while edges remain:
 \begin{itemize}
 \item remove nodes of degree \(\Delta \) + adjacent edges
 \begin{itemize}
 \item put these in \(V.C. \)
 \end{itemize}
 \item update degrees of remaining nodes
 \item increment \(i \)
 \end{itemize}

Output all removed nodes as \(V.C. \).
\end{itemize}

Is it a \(V.C. \)?
- no edges remain at end
- all edges were removed when adjacent node was put into \(V.C. \).

Is it a good approximation?

Let optimal \(\Theta \) be any min \(V.C. \) of \(G \)

\(\text{Thm} \quad |\Theta| \leq \text{output} \leq (2\log \Delta + 1) \cdot |\Theta| \)

\(\uparrow \)
- because \(\Theta \) is min \(+ V.C. \)
\(\uparrow \)
- to prove
Theorem

Let $\gamma = \theta + 1 \log_2 \theta$. Then, γ-edge coloring for θ-edge coloring can be approximated in $O(\theta \log \theta)$ rounds.

Proof

1. Set $\gamma = \theta + 1 \log_2 \theta$ and $\epsilon = 1/\log_2 \theta$.
2. Let $\theta' = \theta - \epsilon$.
3. Run L-edge coloring algorithm on graph θ'.
4. Let $\theta'' = \theta' + \epsilon$.
5. Run γ-edge coloring algorithm on graph θ''.

Correctness

Let Γ^* be an optimal $(\gamma + \epsilon)$-coloring. The algorithm produces a $(\gamma + \epsilon)$-coloring Γ. We define $\Gamma'_0 = \Gamma$ and $\Gamma'_i = \Gamma_i$ for $i \geq 1$. Then, Γ'_i is a $(\gamma + \epsilon)$-coloring that differs from Γ^* in at most $\epsilon \log_2 \theta$ colors.

Analysis

Let $\theta' = \theta - \epsilon$. The algorithm produces a $(\gamma + \epsilon)$-coloring Γ' of the graph θ'. We define $\Gamma'_0 = \Gamma'$ and $\Gamma'_i = \Gamma_i$ for $i \geq 1$. Then, Γ'_i is a $(\gamma + \epsilon)$-coloring that differs from Γ^* in at most $\epsilon \log_2 \theta$ colors.

Running time

The algorithm runs in $O(\theta \log \theta)$ rounds.
edges touching X:

\[
\geq \frac{\Delta}{2^i} |X|
\]

since deg of any node in X is at least $\frac{\Delta}{2^i}$.

\[
\leq \frac{\Delta}{2^{i-1}} |\Theta|
\]

since each edge has other endpt in Θ and all nodes have degree $\leq \frac{\Delta}{2^{i-1}}$.

\[
\Rightarrow \quad \frac{\Delta}{2^{i-1}} |\Theta| \geq \frac{\Delta}{2^i} |X|
\]

\[
|X| \leq 2 |\Theta|
\]

\[\square\]

\[\text{idea}\]

lots of nodes in X \Rightarrow lots of edges in X \Rightarrow (since each node in Θ can't handle too many edges),

lots of nodes in Θ.

but Θ isn't that big, so X can't be too big either.
Round

\[i \leq 1 \]

while edges remain:

• remove nodes of \(\text{deg} \geq \frac{\Delta}{2^i} + \text{adjacent edges} \)

• put these in \(V.C. \) already covered

• update degrees of remaining nodes

• increment \(i \)

output all removed nodes as \(V.C. \)

Claim each round adds \(\leq 2|\Theta| \) new nodes (not in \(\Theta \)) to output \(V.C. \)

since \(\leq \log \Delta \) rounds

output \(\leq |\Theta| + 2|\Theta| \cdot \log \Delta \)

\[= (1 + 2\log \Delta) \cdot |\Theta| \]

size of \(V.C. \) that is output

Gives \((O(\log \Delta), \varepsilon) \)-approx in \(O(\log \Delta) \) queries

Can do better...