Monotonicity testing

Ronitt Rubinfeld
6.5240 Sublinear Time Algorithms

(slides on testing monotonicity of functions)f: {0,1}" - {0,1} from Sofya
Raskhodnikova

i
I i
g R L T G

¥ i
W i

m/2017/11/14/pho

-
‘“':

. ﬁ. ;
Sl s H ;
' § ﬁ’

\
w-futuristic- Ilbrary-chma 13%&}‘9"

W s

T 1 ol ey, iy

i 1 riM!ﬂ'lll'num'm, —
TR wmfm_umuh]mm.mmmm
VOl D S 1y ol ey

ik L L R T R

dr Ll A h0ey WY mre st
oty L el B T | ?I“"”Tlllllmﬁwlmlgli
i (1 BTN
ixn Iilfllhl Hllnlnl‘lrmlnlmmmm’il mllliﬁlnllmﬁm[m LR T
il M W e imrmmn mm

W T .ii'u'mf“w"i

LR | S DL LR R RO TR ET IR e

T TT T T AR BB Y A 4 a0) Wm‘iwr i

' LI s o T L it o | iﬁi i

Sortedness of a sequence

* Given: list y,;y,... ¥,
e Question: is the list sorted?

* Clearly requires n steps — must look at each y,

Sortedness of a seguence
* Given: list y,;y,... ¥,

e Question: can we quickly test if the list close to sorted?

What do we mean by quick”?

* query complexity measured in terms of list size n

e Our goal (if possible):
* Very small compared to n, will go for clog n

What do we mean by “close”?

Definition: a list of size n is e-close to sorted if can
delete at most n values to make it sorted.
Otherwise, ¢-far.

(¢ is given as input, e.g., €=1/5)

Sorted: 1 2 45 7 11 14 19 20 21 23 38 39 45
Close: 1 4 25 7 11 14 19 20 39 23 21 38 45
14 5 711 14 19 20 23 38 45

Far: 453923138 4 5 212019 2 7 11 14
1 4 5 /7 11 14

Requirements for algorithm:

e Pass sorted “StS]\C/Vh?at if list not sorted, but not
ars

e Fail lists that are ¢-far.

* Equivalently: if list likely to pass test, can change at most ¢ fraction of list to
make it sorted

Probability of success > %

(can boost it arbitrarily high by repeating several times and outputting “fail” if ever see a “fail”,
“pass” otherwise)

e Can test in O(1/¢ log n) time

(and can’t do any better!)

A first try for an algorithm:

Pick random entry and test that entry and its right
neighbor are in the correct order

Good input type:
1 2 45 7 11 14 19 20 21 23 38 39 45 465057 6061 80

First try (cont.):

* Proposed algorithm:
* Pick random i and test that y<y;,,

* Bad input type:
« 1,2,3,4,5,..n/4, 1,2,...n/4,1,2,..n/4, 1,2,....n/4
* Difficult for this algorithm to find “breakpoint”
* But other tests work well on this input...

Yi

A second try for an algorithm:

Pick lots of random entries and pass if all in right order

Good input type:
1 2 45 711 14 19 20 21 23 38 39 45 465057 6061 80

A second try:

Pick lots of random entries and pass if all in right order

Bad input type:
1 245 711141920211 2 4 5 7 11 14 19 20 21

4

A second try:

Pick lots of random entries and pass if all in right order

N
How

many?
J

Another bad input type:

21 54 11 7 19 14 21 20 38 23 45 39 50466057 80 61

A second attempt:

* Proposed algorithm:
* Pick random i<j and test that y<y;
* Bad input type:
* n/4 groups of 4 decreasing elements
4,3,2,1,8,7,6,5,12,11,10,9...,4k, 4k-1,4k-2,4k-3,...
 Largest monotone sequence is n/4
* must pick i,j in same group to see problem
* need Q(n1/2) samples. (also O(n1/?) is enough)

Yi a ®

v

A minor simplification:

* Assume list is distinct (i.e. x; #x;)

* Claim: this is not really easier
* Why?
Can “virtually” append j to each x;
XX Xp 2 (X3,1), (X5,2),...,(X,,N)
e.g., 1,1,2,6,6 2(1,1),(1,2),(2,3),(6,4),(6,5)
Breaks ties without changing order

A test that works

* The test:
Test O(1/¢) times:
* Pick randomii
* Look at value of y.
* Do binary search for y.
* Does the binary search find y; at location i? If not, FAIL

* Does the binary search find any inconsistencies? If yes,
FAIL

* Do we end up at location i? If not FAIL
Pass if never failed

* Running time: O(g?log n) time
* Why does this work?

Behavior of the test:

* Define indexjto be good if binary search for y; successful

* O(1/¢ log n) time test (restated):
* pick O(1/¢) i’'s and pass if they are all good

* Correctness:

e If list is sorted, then all i’s good (uses distinctness) =2 test
always passes

* If list likely to pass test, then at least (1-¢)n i’s are good.

* Main observation: good elements form increasing
sequence

* Proof: for i<j both good need to show y; <y,
* let k = least common ancestor of i,
e Search for i went left of k and search for j went
rightofk >y, <y, <y,
* Thus list is e-close to monotone (delete < en bad
elements)

Monotonicity of Functions

1 1 0
(A function f : {0,1}"* — {0,1} is monotone 1

if increasing a bit of x does not decrease f(x).

0
monotone
* Is f monotone or g-far from monotone 0
(f has to change on many points to become monontone)?
* Edge x—yisviolated by f if f (x) > f (). 1 0 N0
_] 0
Time:
* Today: O(n/¢), logarithmic in the size of the i?put, 2™ 1

 Newer: O(y/n/&?) for nonadaptive tests, () (nE) %—far from monotone

17

Monotonicity Test

Idea: Show that functions that are far from monotone violate many edges.

ﬂEdgeTest (f,€) \
Ll. Pick 2n /¢ edges (x, y) uniformly at random from the hypercube. J

2. Rejectif any (x,y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

* If f is monotone, EdgeTest always accepts.
* If f is e-far from monotone, will show that = ¢/n fraction of
edges (i.e., % 2" 1In = £2™1 edges) violated by f.
* Let V/(f) denote the number of edges violated by f.

Contrapositive: If V(f) < e2™1,
f can be made monotone by changing < ¢ 2™ values.

|

(Repair Lemma
L f can be made monotone by changing < 2 - V(f) values. J

Repair Lemma: Proof Idea

(Repair Lemma

Lf can be made monotone by changing < 2 - V(f) values.

—

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

peiiypsabypsaliypad

19

Repairing Violated Edges in One Dimension

Swap violated edges /—0 in one dimension to 0— /.

. 0 0 0 0
Z /___7\ /_____7\
i 1)Z — —g Swapping horizontal 0 “———- —>1)/
dimension
o), T—> :

1

Let I/; = # of violated edges in dimension j

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

Enough to prove the claim for squares

20

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase I/; for all dimensions j # i]

jT_>.

e A e A
l Swapping horizontal
dimension
—————— > ——————>

* If no horizontal edges are violated, no action is taken.

21

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

J
1\—>. | - 0 o______ =1
l 1 \ Swapping horizontal 1
dimension
| >
1b————- >0 0-————-— ~1

* If both horizontal edges are violated, both are swapped, so the number of vertical
violated edges does not change.

22

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

J
1\—>. |)AO 0 —————— =1
l 1 Swapping horizontal
dimension
| >
v o ~v v TV

* Suppose one (say, top) horizontal edge is violated.
* If both bottom vertices have the same label, the vertical edges get swapped.

23

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i%

J
1\—>. | - 0 o______ =1
l \ Swapping horizontal
dimension
| >
0-————- ~1 0-————-— ~1

e Suppose one (say, top) horizontal edge is violated.
* If both bottom vertices have the same label, the vertical edges get swapped.
e Otherwise, the bottom vertices are labeled 0—1, and the vertical violation is repaired.

24

Proof of The Claim for Squares

Clalm Swapping in dimension i does not increase V; for all dimensions j + l

pedypsaiiypaatipsd

After we perform swaps in all dimensions:
* f becomes monotone

e # of values changed:
2-V; + 2 - (#violated edges in dim 2 after swapping dim 1)
+ 2 - (# violated edges in dim 3 after swapping dim 1 and 2)
+ <2V +2-V,+2-V,=2-V(f)

(Repair Lemma 5(

Lf can be made monotone by changing < 2 - V(f) values.

e Canimprove the bound by a factor of 2.

25

Testing if a Functions f : {0,1}"* — {0,1} is monotone
1

11 0
P
47

monotone
Monotone or 0
_ 2 5/
e-far from monotone- 1 0 \0
1 0

O(n/¢g) time

(logarithmic in the size 1

1
E—far from monotone

of the input)

26

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions
f:{1,..,n1}% > R, including:

7
ﬁ//}/

yd
d

N\

d

\

]
/

* Lipschitz property
* Bounded-derivative properties

* Unateness

27

