Local generation of
combinatorial objects

Amartya Shankha Biswas (MIT), Ronitt Rubinfeld (MIT), Anak
Yodpinyanee (MIT)

on the fly?

?
Locally

.__. g™ “.. i 3 .. 1
» e ri PR
N sty e

A

k _i.‘.-.. LT _.l..__... :
st NI L

-q.-..-_. .-.mi_-u [
« B __._._ql_.___.._____ ii? R l...&_.

Generating large random graph

1

2

9

10

O 00 N O U1 »H» W N =

—
o

, O O O o o

o |

P, O O O O]\

[N

Generate “on
the fly”?

What if d-regular?
support “next-
neighbor” queries?

A challenge:
How to handle dependencies?

Sources of dependencies:

Model, supported queries,...

Models

Two models for random generation of graphs

Huge pseudo-random Big random graphs/objects
graphs/objects [Goldreich [Even Levi Medina Rosen]
Goldwasser Nussboim] [Biswas R Yodpinyanee]
* Huge = exponential size * Big = poly size
e User will not query more * Might eventually write down
than poly locations the whole graph, but don’t
 May be sufficient to generate want to pay cost up-front
graph that “looks” random to * End result should be random
poly time algorithm? according to the claimed
process

“On the fly” Sampler
[ELMR] [BRY]

“On the fly” Sampler

{ Rendombits | - query

response

“On the fly” Sampler

{ Rendombits | - query

response

Desiderata:

* Efficiency:
* Answer in sublinear (polylogarithmic?) time

* Distribution equivalence:
e Qutput distribution e-close (£-distance) to goal distribution

Possible queries on graphs:

 \Vertex-pair (adjacency): Is edge (u,v) present? considered by

* All-Neighbors: What are all neighbors of u? [GGN] [NN]

* Degree: What is degree(u)?

* jth neighbor: What is ith neighbor of u? [Even Levi Medina

* Next-neighbor: What is next neighbor of u? - Rosen 2017]
 Random-neighbor: Output random neighbor of u?

~

can take random wa
in large degree
random) graph!

[Biswas R
Yodpinyanee]

G(n,p) graphs

Dense G(n,p) next-neighbor queries:

Node

i's | O
row
Node
i's | O
row

Algorithm idea:
Toss coins to fill in empty entries until toss a 1

Next-neighbor queries: directed graphs

Node
is | 0Ol1 01001

row

Node v v

s10|1|0|0]|0]|1

row

Algorithm idea:
Pick length of O-run according to hypergeometric distribution (via

im0 p(l-p)f=1-QQ-pP°
Fill in next entry (/ /+k) with a 1

need to write
all Os?

Next-Neighbor Query:

neighbor?

Dense case: p = 1/poly(logn)

e Algorithm:
 Start at last found neighbor

* Go down row, flipping coins to fill
empty entries, until find neighbor.

* Time O(1/p).

Can we do o(1/p) for
p=o0(1)?

what is u’s next

Sparse case: p < poly(logn)/n
* Algorithm: Use “all neighbor” query [Naor
Nussboim 07]

* Time O(E|[degree]) = O(polylog n)

Intermediate case: (e.g. p = \/n

* “run length encoding” Idea: Sample
length of O’s run according to
hypergeometric distribution p(1 — p)*

* Challenge: some entries already filled
in!

some are
determined

by other
neighbor?

For next-neighbor querie
Undirected gra

yields
correct
distribution?

Only need to keep
rTow i 0 0 ? 1
]/ track of 1’s: /I/
\ Not so many! Y
row i 0 1 //(1

Algorithm idea:

Pick length of O-ru

b
k

Fill in next entry (i, j+

need to write
all Os?

Rule: first flip of
edge (u,v) is what
counts

Implementation of next neighbor queries:
(assume no adjacency queries)

* For each node i maintain:
1. last seen neighborj (row entries 1..j are determined, andjis a “1”)
2. list of “1”s coming before j (everything else is “0”)
3. remaining“1”s via min-heap
4. Keep track of “0”s on row implicitly

Only keep track of 1's
+ notify other

column neighbor about 1’s

rowt fol1lololol1lz2|2]2]lo0]l2?2]2|l0]|?2]|1

{2,6} {15}

TOW 1

Tow 1

Y

\

some are

determined

Skip-sampling for next-\ byother

neighbor?

|f ”1”, then
neighbor has told

i about it

Not so many 1’s so \

0

have time to deal
with them:

=

0

1

Algorithm:

* pick k according to
* Ifj+k>next1ini’s
* elseif (i, j+k) previo

* else add (i, j+k) to he

0

o

Rule: first flip of
edge (u,v) is what
counts

if beforenm
“1” and land

here, pick new
length starting
from here

why correct
distribution?

Random-Neighbor Query: output random

neighbor of |

Dense case: p = 1/poly(logn)

* Algorithm:
* repeat until find neighbor:

* pick random j
* do vertex pair query on (i,)

* Time 0§1/p).

Can we do o(1/p)
forp =0(1)?

Sparse case: p < poly(logn)/n
e Algorithm: Use “all neighbor” query
[Naor Nussboim 07]

* Time O(E|[degree]) = O(polylog n)

. 1
Intermediate case: (e.g.p = \/ﬁ)
?27?
we don’t even know degree?

Implementation of Random-Neighbor
gueries via Bucketing and skip-sampling

Plan: Equipartition each row into contiguous buckets such that:
Expected # of neighbors in a bucket is a constant
= w.h.p. 1/3 of buckets are non-empty
= w.h.p. no bucket has more than log n neighbors

(drumroll...)

= can write down all log n neighbors for each bucket! (assuming you can
figure them out)

How many buckets? Note that both size and

pn, each of size 1/p number of buckets can
be big

Random Neighbors with rejection sampling

expected #neighbors in a bucket
= O(1) expected, < O(logn) w.h.p.

ve [Jof |1 of | oj1 o HEDEEECE s

— Step 1 pick a uniform random bucket J,
“fill” this bucket if needed

0[0]1/0]1 010

Step 2 pick a uniform random neighbor

L+ return or reject
#neighbors in the bucket

Bucketing: = #neighbors ~ #bucket

Keep list of 1’s,
then can pick nbr
quickly

Step 3 return u with probability

O(logn)
otherwise, try again
_ 1 1 #neighbors in bucket . €Q(1/logn)
P[retum U] ~ #buckets X #neighbors in bucket X O(logn) ™~ 4tneighbors of v

Plreturn any neighbor| & Q(1/logn) = O(log n) iterations suffice

How to fill a bucket?

* Bucket may be indirectly filled in certain locations
* "1" entries reported when created
* "0" entries not reported but can query from complementary bucket

2171?21 72101?71110] 77

* First, fill bucket ignoring existing entries
ojo(1jo1oj1y11{0O0]1]0}1]60

* Fix to conform to “first flip”:
» Re-insert all indirectly filled (red) "1" entries: {2,8}

* For each new (green) "1" entry: remove if coincides with indirectly filled
"0" entries

ol1f1fofo|[X|1]1]0]|1]0O

Graph models supporting typical graph queries:

G(n,p)
Community structure: Stochastic Block Model

Small world graphs

Random walks

Large 1D Random Walk (on the line)

with probability 1/2 /
with probability 1/2 \

v/\/\\/ /\/\//\/\/\/\/\/\\\

What if we only care about a few
positions?

Query Height(t) returns position of walk at time t
with probability 1/2 /
with probability 1/2 \

Query

What if we only care about a few
positions?

Query Height(t) returns position of walk at time t
with probability 1/2 /

with probability 1/2 \ Response
©
©
(@) Query

Queries appear in arbitrary order

Consistent with 1D Random Walk

with probability 1/2 /

with probability 1/2 \ Response
/\/\/\ \/\/\/f\\/\\/\\
/NN /™ AN
N/ Nt S T 1T N\
V Query

Queries appear in arbitrary order

local generation of hypergeometric distribution
[Gilbert Ghuha Indyk Kotidis Muthukrishnan Strauss]
[Goldreich Goldwasser Nussboim]

Random walks:

I

A

® Random walks on the line

® Random Catalan objects
® Random Dyck paths
®* Well bracketed expressions
® Random Rooted Trees

[Biswas R Yodpinyanee]

OC)
0(())(()()

NN

- OCONOOCN ...

Polylogarthmic time

gueries: 0 ,

o AN 0,00)
AN N

yd

()(())(()(()()))
®* Random walks on the line ® Height queries

® Random Catalan objects queries
®* Random Dyck paths ® First-Return queries
®* Well bracketed expressions queries

® Random Rooted Trees

[Biswas R Yodpinyanee]

Random walks on graphs
[Biswas Pyne R]

* Given G, start vertex s, what is location of random walk at
time t?

* Query time upper bounds:

* Polylog time for hypercube, cycle, Cayley graphs, structured
graphs (tensor and Cartesian products)

~ 1 .
0 (E \/ﬁ) for spectral expansion A

* Lower bound: Q(y/n) for random graphs

https://graphstream-project.org

Generating Random Colorings
of Large Graphs

Random Colorings of Large Graphs

* Input graph: G
* Maximum Degree: A
* Number of colors: g > A (hereg > 12 A)

* Output: Uniformly random valid coloring of G

* Query: Color of node v?

Sublinear probes to G?

e S

First try

* Basic (sequential) Markov Chain for g > 2A [Jerrum]: /
« Random node v picks random color 'i““m *}
e Update v to new color if no conflict with neighbors |
[O(nlogn) steps }
(sequential) M
* On query Color(v,t) = Color of node v at time t

* When was v last picked? which color did it choose? Conflict? ZN\"/ g\

f_,,f

—

/

e For all w nbr of v: color of w at that time?

* Query w’s previous random choice \/.\

* Colors of w's neighbors at that time? (D
&S
=
“‘x\lff

QA7 Q(asm)20m)?

Modified Glauber Dynamics

* Distributed Markov Chain round [Feng Sun Yin]
[Fischer Ghaffari] [Feng Hayes Yin]:

* n nodes simultaneously choose random colors
“proposals”

* Update color if

* no conflict with any neighbor’s current color or
new proposal,

* no neighbor proposal conflicts with current color

{ Need O(log n) rounds }

e S

Modified Glauber Dynamics

* Distributed Markov Chain round [Feng Sun Yin]
[Fischer Ghaffari] [Feng Hayes Yin]:

* n nodes simultaneously choose random colors
“proposals”

* Update color if

* no conflict with any neighbor’s current color or
new proposal,

* no neighbor proposal conflicts with current color

Need O(log n) rounds
[Parnas Ron] > A%U08 M) qyeries?

e S

Modified Glauber Dynamics

Distributed Markov Chain round [Feng Sun Yin] [Fischer Ghaffari]

* n nodes simultaneously choose random colors “proposals”

e Update color if (1) no conflict with any neighbor’s current color or new
proposal and (2) no neighbor proposal conflicts with current color }

Exponent improves
with bigger q

A

Subpolynomial time algorithm: [Biswas R Yodpinyanee]

insight: just make sure that neighbor isn’t colored with color c!

* For each neighbor jump back to previous time color c
was proposed.

* Increment forward to see if overwritten

Much smaller
dependency chains

Some other (prior) works

Implementation of Huge Pseudo-Random
Objects

* Huge pseudorandom functions/permutations/balls-in-bins [Goldreich-
Goldwasser-Micali’86][Luby-Rackoff ‘88][Naor-Reingold '97][Mansour-Rubinstein-

Vardi-Xie "12]

 Model introduced and formalized in [Goldreich-Goldwasser-Nussboim 2003]

* Generators for random functions, codes, graphs,...
* Generators provide queries to random graphs with specified property
* e.g. Planted Hamiltonian cycle, clique, colorability, connectedness, bipartiteness
* Focus on indistinguishability under small number of queries and poly time. (see also
[Naor Nussboim Tromer 05] [Alon Nussboim 07])
* Give important primitives
e e.g. Sampling from binomial distribution, interval-sum queries for functions (see
also [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss 2002]

e d-regular graph implementations [Naor Nussboim 07]

Locally Implementing Preferential Attachment
Graphs [Even-Levi-Medina-Rosen 2017]

* Graphs generated:
* Highly sequential random process
* Sparse, but degree not bounded

* Queries:
* Adjacency
* Introduce next-neighbor query (implement with
polylog(n) resources) Give local

° Guarantee: imp|ementati0n

e Close in statistical distance to correct distribution without reconstructing
full history!!

Open problem:

polylogarithmic time for q = 2A?

Future directions

Other random objects?

Support degree, ith neighbor queries in graphs?

Lower bounds on space?

	Local generation of �combinatorial objects
	Slide Number 2
	Generating large random graph
	A challenge:�How to handle dependencies?�
	Models
	Two models for random generation of graphs
	“On the fly” Sampler �[ELMR] [BRY]�
	“On the fly” Sampler �
	“On the fly” Sampler �
	Desiderata:
	Possible queries on graphs:
	G(n,p) graphs
	Dense G(n,p) next-neighbor queries:
	Next-neighbor queries: directed graphs
	Next-Neighbor Query: what is u’s next neighbor?
	For next-neighbor queries:�Undirected graphs
	Implementation of next neighbor queries:�(assume no adjacency queries)
	Skip-sampling for next-neighbor queries
	Random-Neighbor Query: output random neighbor of i
	Implementation of Random-Neighbor queries via Bucketing and skip-sampling
	Random Neighbors with rejection sampling
	How to fill a bucket?
	Graph models supporting typical graph queries:�
	Random walks
	Large 1D Random Walk (on the line)
	What if we only care about a few positions?
	What if we only care about a few positions?
	Consistent with Large 1D Random Walk
	Random walks:
	Polylogarthmic time queries:
	Random walks on graphs�[Biswas Pyne R]
	Generating Random Colorings �of Large Graphs
	Random Colorings of Large Graphs
	First try
	Modified Glauber Dynamics
	Modified Glauber Dynamics
	Modified Glauber Dynamics
	Some other (prior) works
	Implementation of Huge Pseudo-Random Objects

	Locally Implementing Preferential Attachment Graphs [Even-Levi-Medina-Rosen 2017]
	Open problem:
	Future directions

