
6.5240 Sublinear Time Algorithms September 12, 2022

Lecture 1
Lecturer: Ronitt Rubinfeld Scribe: Jeffery Li

1 Outline

Today we had our first discussion of sublinear time algorithms! The general outline of the lecture
was as follows:

• Overview of Course and Sublinear Algorithms

• Diameter of a Point Set

• Number of Connected Components in a Graph

We refer the reader to the slides on the course homepage for the first item.

2 Diameter of a Point Set

Suppose we are given m points, numbered from 1 to m, described by an m×m distance matrix D,
such that each entry Di,j is the distance from i to j. We are given the following guarantees:

• Symmetry : Di,j = Dj,i for all i, j ∈ {1, . . . ,m}.

• Triangle inequality : Di,j ≤ Di,k +Dk,j for all i, j, k ∈ {1, . . . ,m}.

Note that the input size is n = Θ(m2), as we are given m2 distances.

We define the diameter to be the largest element Di,j of the matrix D. We wish to output k, l
such that Dk,l ≥ Di,j/2; we call this a 2-multiplicative approximation, as our answer is within
a factor of two of the exact answer.

2.1 Algorithm

Here, we present a basic algorithm. This algorithm will be the only deterministic algorithm we
present in this class.

1

Algorithm 1: 2-Multiplicative Diameter Estimator

Input : An m×m distance matrix D, such that each entry Di,j is the distance from i to
j, and D satisfies the triangle inequality and symmetry.

Output: A 2-multiplicative approximation of the diameter of the point set.
1 Pick a point k ∈ {1, . . . ,m} arbitrarily.
2 Compute ℓ that maximizes Dk,ℓ, by looking through the row of the matrix D corresponding

to k.
3 Output k, ℓ,Dk,ℓ.

Runtime - The most computationally expensive step is step two, which involves looking through
one row of the matrix D, consisting of m entries. This requires O(m) time, meaning that the total
runtime is O(m) = O(n1/2), i.e., the square root of the size of the input!

Correctness - Suppose the real diameter is Di,j , for some (possibly other) nodes i, j. Then:

Di,j ≤ Di,k +Dk,j by Triangle inequality

≤ Dk,i +Dk,j by Symmetry

≤ Dk,ℓ +Dk,ℓ by maximality of Dk,ℓ

= 2Dk,ℓ,

or that Dk,ℓ ≥ Di,j/2. This means that Dk,ℓ is at least half the diameter!

Note that the fact that we are using a metric space is important — we needed to use the triangle
inequality and symmetry to show that our output is indeed a 2-multiplicative approximation. We
will see many more examples later where we make use of specific properties of the input to achieve
better algorithmic results than the naive approach!

3 Number of Connected Components in a Graph

Suppose we are given a graph G, with |V | = n, |E| = m, and maximum degree d (i.e., no vertex has
more than d + 1 edges adjacent to it), and another parameter ε. Suppose G is given in adjacency
list format.

We wish to output an εn-additive approximation of the number of connected components c
of G. In other words, we want to output y such that c− εn ≤ y ≤ c+ εn.

3.1 Notation

We will define more notation for this problem, to give an alternate characterization of the number of
connected components of G. For all v ∈ V , define nv to be the number of nodes in v’s component.
Observe that for all connected components A ⊆ V ,∑

u∈A

1

nu
=
∑
u∈A

1

|A|
= 1.

This means that, summing over all connected components A ⊆ V ,∑
u∈V

1

nu
=
∑
A⊆V

∑
u∈A

1

nu
=
∑
A⊆V

1 = c.

2

Thus, the number of connected components c is exactly the sum
∑
u∈V

1

nu
.

At first glance, this does not look like an improvement. It seems like we would need to spend
more time to compute this sum because the nu are hard to compute, especially for linear-sized
components!

We will now show how to estimate the nu quickly, and then estimate the number of connected
components using sampling bounds. Intuitively, we will set a “cutoff,” independent of n, for our
estimate of nu, so that if we ever find out that a component has too many vertices, we will report
this cutoff value.

3.2 Subroutine

Here, to estimate 1
nu

, we define

n̂u := min

{
nu,

2

ε

}
, and ĉ :=

∑
u∈V

1

n̂u
.

First, we note the following:

Lemma 1 For all u,
∣∣∣ 1
n̂u
− 1

nu

∣∣∣ ≤ ε
2 . As a result,

|ĉ− c| ≤ εn

2
.

Proof Note that nu is always positive, so 1
nu

> 0. We now perform casework:

• If nu < 2
ε , then n̂u = nu, so the difference 1

n̂u
− 1

nu
= 0.

• Otherwise, if nu ≥ 2
ε , then n̂u = 2

ε . Reciprocating the inequalities, we get

0 <
1

nu
≤ 1

n̂u
=

ε

2
;

since both quantities are in the interval (0, ε/2], their absolute difference must be at most
ε
2 − 0 = ε

2 .

Thus, in all cases,
∣∣∣ 1
n̂u
− 1

nu

∣∣∣ ≤ ε
2 . Summing over all u and using the triangle inequality, we see

that

|ĉ− c| =

∣∣∣∣∣∑
u∈V

1

n̂u
− 1

nu

∣∣∣∣∣ ≤∑
u∈V

∣∣∣∣ 1n̂u
− 1

nu

∣∣∣∣ ≤∑
u∈V

ε

2
=

εn

2
,

as desired.

Now, we note that computing 1
n̂u

is less time-consuming!

3

Algorithm 2: Algorithm to Compute n̂u

Input : A graph G = (V,E), in adjacency list format, and a vertex u.
Output: The value n̂u = min

{
nu,

2
ε

}
.

1 Perform BFS from u until one of the following two conditions:

2 We visit 2
ε distinct nodes (i.e., nu ≥ 2

ε), in which case we output 2
ε .

3 We visit all nu < 2
ε vertices of u’s component, in which case we output nu.

Runtime - Note that we take O(d) time per BFS step, as each vertex has degree at most d, and
we visit O(1ε) vertices in our BFS. Thus, our overall runtime is O(d · 1ε). Note that we technically
do not need the factor of d (and we could instead replace it with a factor of O(1ε), say), but we will
keep it since we need it later on (particularly for other graph representations).

3.3 Algorithm

Now, how do we estimate
∑

u
1
n̂u

? The algorithm is as follows:

Algorithm 3: εn-Additive Connected-Component Estimator

Input : A graph G = (V,E), in adjacency list format.
Output: An εn-additive approximation of the number of connected components of G, with

good constant probability (say with probability at least 3
4).

1 r ← b/ε3 for some constant b.
2 Choose r nodes U = {u1, . . . , ur} independently and uniformly at random from V .
3 For all ui ∈ U , compute n̂ui

via Algorithm 2.

4 Output c̃ = n ·

(
1

r

∑
ui∈U

1

n̂ui

)
.

(Note that in our last step, we are estimating the average value of 1
n̂u

based on our sample, and
renormalizing based on the number of vertices.)

Runtime: Since we chose O(1
ε3) nodes and ran O(dε)-time BFS on each of the nodes in step

three, and none of the other steps are computationally expensive, this algorithm takes time O(d
ε4)

overall.

Accuracy/Correctness: We now have to recall the Chernoff bounds — super powerful but
has a lot of moving parts (and similar to Hoeffding’s inequality and binomial coefficient bounds).
Intuitively, what this says is that, as the range of values gets smaller and smaller and our error range
gets larger and larger, we get exponentially more powerful guarantees. More formally, we have the
following:

Theorem 2 (Chernoff Bounds) Let δ ∈ [0, 1]. Suppose we have X1, X2, . . . , Xr, independent,
identically distributed (i.i.d.) random variables in the range [0, 1] with E[Xi] = p. Let S =

∑r
i=1 Xi.

Then

P
[∣∣∣∣Sr − p

∣∣∣∣ ≥ δp

]
≤ exp(−Ω(rpδ2)).

Note that some versions restrict the Xi to be 0 − 1 random variables; here we use the more
general version.

4

If we apply the Chernoff bound here, note that

p = E[Xi] =
1

n

∑
u∈V

1

n̂u
=

ĉ

n
,

δ = ε
2 , and

S
r = c̃

n . Since
ε
2 ≤

1
n̂u
≤ 1 for all u ∈ V ,

εn

2
≤ ĉ ≤ n =⇒ ε

2
≤ ĉ

n
= p ≤ 1,

so that

P
[
|c̃− ĉ| ≥ εĉ

2

]
= P

[∣∣∣∣ c̃n − ĉ

n

∣∣∣∣ ≥ εĉ

2n

]
= P

[∣∣∣∣ c̃n − ĉ

n

∣∣∣∣ ≥ δp

]
≤ exp

(
−Ω

(
b

ε3
pδ2
))

= exp

(
−Ω

(
b

ε3
· ĉ
n
·
(ε
2

)2))
≤ exp

(
−Ω

(
b

ε3
· ε
2
·
(ε
2

)2))
= exp(−Ω(b/8)).

Setting b large enough will give us a good constant probability (i.e., at least 3
4) that |c̃− ĉ| ≤ εĉ

2 , or
that

|c̃− c| ≤ |c̃− ĉ| − |ĉ− c| ≤ εĉ

2
+

εn

2
≤ εn.

Combining all of our work, this means that our algorithm will return an εn-additive approximation
of the number of connected components of G with good constant probability, as desired.

This is part of the reason why we chose 2
ε as the cutoff for our estimates for the sizes of connected

components and r = b
ε3 as the size of our sample. Not only do these values help make our runtime

independent of n while still maintaining εn additive error, they also help lower bound r and p in
the Chernoff bounds, which in turn help us get a small constant probability of error in our last few
steps when applying the Chernoff bounds.

Note that one can turn this into an algorithm with “with high probability” guarantees (i.e., error
probability is at most 1

poly(n)) with slight increase in runtime (in particular, the runtime becomes

dependent on n); see Homework 0 for more details.

Also, it turns out that the runtime can be driven down to Õ(d 1
ε2).

5

	Outline
	Diameter of a Point Set
	Algorithm

	Number of Connected Components in a Graph
	Notation
	Subroutine
	Algorithm

