6.5240 Sublinear Time Algorithms October 19, 2022

Lecture 11
Lecturer: Ronitt A. Rubinfeld Scribe: Ethan Zahid

1 Overview

This lecture looked at two main things. First it defined Yao’s principle, which tells us that an
average case deterministic lower bound on query complexity is a randomized worst case lower
bound on query complexity. Next we considered the problem of determining whether a string is
the concatenation of two palindromes and lower bounded the query complexity of any algorithm
that solves this problem as Q(y/n).

2 Yao’s Principle

Theorem 1 Suppose there exists a distribution D on pass/fail inputs such that any deterministic
decider with < t query complexity is wrong with probability p > % on input uniformly randomly
chosen from D. Then t is a lower bound on the complexity of a randomized decider for the same
query.

Proof Consider a problem over inputs X and A be the set of all possible deterministic algorithms
that solve the problem. For a € A,z € X let ¢(a,z) be the cost of running algorithm a on input x.
Then Yao’s principle claims that for A € A, X € X chosen from some distributions on A, X

max Elc(A,z)] > g(éli‘l Elc(a, X)]

which is just a special case of von Neumann’s minimax theorem.

3 Palindrome Concatenation

3.1 Problem

Note that the problem of determining whether or not a string z is a palindrome is pretty simple.
We repeatedly sample i from [n] and check that z; = z,+1-; and reject if this is ever not the case.
By making O(%) we can get a very good algorithm since for a string that is e-far from being a
palindrome, each sample has probability at least € of causing the algorithm to reject and so after
% samples you expect the algorithm to reject. What about determining whether or not a string z

is the concatenation of two palindromes?

Let L, = {w|lw € {0,1}",w = vvfuul*} be the set of strings that are the concatenation of two
palindromes. Define w to be e-close to L,, if 3 w’ € L,, such that w,w’ differ in < en places.

Theorem 2 An algorithm A must make Q(\/n) queries if it satisfies that
2
Vz € L, Pr[A(z) = Pass| > 3

Va e-far from L, Pr[A(z) = Fail] > g

The rest of the notes will be dedicated to proving the above theorem.

3.2 Distributions

First we define three distributions as follows

Distribution N
e Output uniformly randomly from all strings e-far from L,
Distribution P

e Pick k€ [+1,%]

e Generate random v, such that |[v| =k, |u| = § — k

e Output voftuuf

Distribution D

e Output from N with probability % and from P with probability %

3.3 Error

Any deterministic algorithm A works by making successive queries and decides what query to
make next based on the result of the previous queries. Using ¢t queries there are 2! sequences of
queries /results we can make (assuming binary results to queries), call these 2¢ queries the root-leaf
paths of A. Each of these 2! leaves will output pass or fail according to A.

Now for a leaf [we define the following two errors of [

e E~(I) = {inputs w e-far from L,, that reaches [}

e ET(l) = {inputs w € L,, that reaches [}

Total Error on D = Z Priw € E~(I)] + Z Prjw € ET(1)]

pass 1 fail [
Claim 3 Ift=o0(n), V1 at depth t

Prplw € B~ (1)] > (; _ 0(1)> Lot

Proof Since there are 22 choices for u,v and 5 choices for k
|| < on/2 g

Let P, be the set of w that are e-close to L, if for each element of L,, we consider all strings we
can get by changing it in r places for r € [en] we get all elements of P, therefore

en
pl<on/2. . Y con2 ™ (T
[Pnf < 2 ;0 r) 2 n n

Since (:f) for r € [en] is maximized at r = en. Next see that an application of Stirling’s Approxi-

mation gives the bound
n en\k
<(%)

n/2 T n n/2 en’ 1\ en
on/2 . 2 oy < 9n/2. -z e
en €

2
en? 1\ " 2 1
2”/2 R <> e < 2n/2 . 2log% . 210g(;)5” . 21og65"
€
<

2n/2 . 210g e+2logn | gen log% . 2267’1,
< 2n/2+26n log%
Next see that of the 2" inputs in {0,1}" exactly 2" reaches any specific leaf [. This is because

each of the t decisions in our query tree splits the input space in half until 27 of the 2" inputs
reach [. This means that

|E_(l)‘ > 2n—t o ’Pn| > 2n—t . 2n/2—|—25n10gl — (1 _ 0(1)) . 2n—t

(A-o(1))-2n7" <1 _ 0(1)> Lot

LJEm(@] 1
2 2n 2

2 [N]

Prplw e E~(1)] = >

where the % comes from the probability we choose from N. B

Claim 4 Ift =o(y/n), V 1 at depth t

Peolu € BY0) 2 (5 —ol1)) -2

Proof In our algorithm, for any input we make ¢ queries. If we consider all () pairs of these 2

queries, for each pair of queries there is clearly at most 2 values of k for which the two queries are

symmetric around either k or § + k. Then the number of £ such that no two of the ¢ queries are
symmetric around k or §+k is > %—2(;) = §(1—o(1)) for t = o(y/n). In addition, for each of these

values of k there are 2/2 inputs from L,, which are evenly split up amongst the 2¢ leaves (since
the queries are not symmetric around k, § + k) and so each leaf | has |[E*(l)| =

= B(1—o(1))- 25
Now see that
Prplw € E¥(l)] = Z ZPTD [w|k] - Pr[choose k] - 1,ep+ ()
w ok
1 1 1
Prp[w|k] = —Prplw|k] = = - 2—71/27 Prlchoose k] = — = §

1 (1—o(1))-2.9n/2-t 1
Profu € £¥(0) = 3 52 L tuepy = 3 AR (o) o

%, 2n/2

3.4 Conclusion

If t = o(y/n) then the total error satisfies

Total Error on D = Z Prjw e E~(I)] + Z Prjw € ET(1)]

pass [fail 1
TotalErroronD>Z (—o > 2- +Z <—0)-Zt
pass [fail [

Total Error on D > Z < - 0(1)> 27t

3

And so by Yao’s Principle any algorithm A that passes w € L, with probability >
e-far from L, with probability > % must use Q(y/n) queries, proving the theorem.

1 1
Total Error on D > <2 - 0(1)> > -

% and fails w

