
6.5240 Sublinear Time Algorithms October 19, 2022

Lecture 11

Lecturer: Ronitt A. Rubinfeld Scribe: Ethan Zahid

1 Overview

This lecture looked at two main things. First it defined Yao’s principle, which tells us that an
average case deterministic lower bound on query complexity is a randomized worst case lower
bound on query complexity. Next we considered the problem of determining whether a string is
the concatenation of two palindromes and lower bounded the query complexity of any algorithm
that solves this problem as Ω(

√
n).

2 Yao’s Principle

Theorem 1 Suppose there exists a distribution D on pass/fail inputs such that any deterministic
decider with ≤ t query complexity is wrong with probability p ≥ 1

3 on input uniformly randomly
chosen from D. Then t is a lower bound on the complexity of a randomized decider for the same
query.

Proof Consider a problem over inputs X and A be the set of all possible deterministic algorithms
that solve the problem. For a ∈ A, x ∈ X let c(a, x) be the cost of running algorithm a on input x.
Then Yao’s principle claims that for A ∈ A, X ∈ X chosen from some distributions on A,X

max
x∈X

E[c(A, x)] ≥ min
a∈A

E[c(a,X)]

which is just a special case of von Neumann’s minimax theorem.

3 Palindrome Concatenation

3.1 Problem

Note that the problem of determining whether or not a string x is a palindrome is pretty simple.
We repeatedly sample i from [n] and check that xi = xn+1−i and reject if this is ever not the case.
By making O(1ϵ ) we can get a very good algorithm since for a string that is ϵ-far from being a
palindrome, each sample has probability at least ϵ of causing the algorithm to reject and so after
1
ϵ samples you expect the algorithm to reject. What about determining whether or not a string x
is the concatenation of two palindromes?

1



Let Ln = {w|w ∈ {0, 1}n, w = vvRuuR} be the set of strings that are the concatenation of two
palindromes. Define w to be ϵ-close to Ln if ∃ w′ ∈ Ln such that w,w′ differ in ≤ ϵn places.

Theorem 2 An algorithm A must make Ω(
√
n) queries if it satisfies that

∀x ∈ Ln Pr[A(x) = Pass] ≥ 2

3

∀x ϵ-far from Ln Pr[A(x) = Fail] ≥ 2

3

The rest of the notes will be dedicated to proving the above theorem.

3.2 Distributions

First we define three distributions as follows

Distribution N

• Output uniformly randomly from all strings ϵ-far from Ln

Distribution P

• Pick k ∈ [n6 + 1, n3 ]

• Generate random v, u such that |v| = k, |u| = n
2 − k

• Output vvRuuR

Distribution D

• Output from N with probability 1
2 and from P with probability 1

2

3.3 Error

Any deterministic algorithm A works by making successive queries and decides what query to
make next based on the result of the previous queries. Using t queries there are 2t sequences of
queries/results we can make (assuming binary results to queries), call these 2t queries the root-leaf
paths of A. Each of these 2t leaves will output pass or fail according to A.

Now for a leaf l we define the following two errors of l

• E−(l) = {inputs w ϵ-far from Ln that reaches l}

• E+(l) = {inputs w ∈ Ln that reaches l}

2



Total Error on D =
∑
pass l

Pr[w ∈ E−(l)] +
∑
fail l

Pr[w ∈ E+(l)]

Claim 3 If t = o(n), ∀ l at depth t

PrD[w ∈ E−(l)] ≥
(

1

2
− o(1)

)
· 2−t

Proof Since there are 2n/2 choices for u, v and n
2 choices for k

|Ln| ≤ 2n/2 · n
2

Let Pn be the set of w that are ϵ-close to Ln, if for each element of Ln we consider all strings we
can get by changing it in r places for r ∈ [ϵn] we get all elements of Pn, therefore

|Pn| ≤ 2n/2 · n
2
·

ϵn∑
r=0

(
n

r

)
≤ 2n/2 · n

2
· ϵn ·

(
n

ϵn

)
Since

(
n
r

)
for r ∈ [ϵn] is maximized at r = ϵn. Next see that an application of Stirling’s Approxi-

mation gives the bound (
n

k

)
≤

(en
k

)k

2n/2 · n
2
· ϵn ·

(
n

ϵn

)
≤ 2n/2 · ϵn

2

2
·
(

1

ϵ

)ϵn

· eϵn

2n/2 · ϵn
2

2
·
(

1

ϵ

)ϵn

· eϵn ≤ 2n/2 · 2log
ϵn2

2 · 2log (
1
ϵ
)ϵn · 2log e

ϵn

≤ 2n/2 · 2log ϵ+2 logn · 2ϵn log 1
ϵ · 22ϵn

≤ 2n/2+2ϵn log 1
ϵ

Next see that of the 2n inputs in {0, 1}n exactly 2n−t reaches any specific leaf l. This is because
each of the t decisions in our query tree splits the input space in half until 2−t of the 2n inputs
reach l. This means that

|E−(l)| ≥ 2n−t − |Pn| ≥ 2n−t − 2n/2+2ϵn log 1
ϵ = (1 − o(1)) · 2n−t

PrD[w ∈ E−(l)] =
1

2
· |E

−(l)|
|N |

≥ 1

2
· (1 − o(1)) · 2n−t

2n
=

(
1

2
− o(1)

)
· 2−t

where the 1
2 comes from the probability we choose from N .

Claim 4 If t = o(
√
n), ∀ l at depth t

PrD[w ∈ E+(l)] ≥
(

1

2
− o(1)

)
· 2−t

3



Proof In our algorithm, for any input we make t queries. If we consider all
(
t
2

)
pairs of these 2

queries, for each pair of queries there is clearly at most 2 values of k for which the two queries are
symmetric around either k or n

2 + k. Then the number of k such that no two of the t queries are
symmetric around k or n

2 +k is ≥ n
6 −2

(
t
2

)
= n

6 (1−o(1)) for t = o(
√
n). In addition, for each of these

values of k there are 2n/2 inputs from Ln which are evenly split up amongst the 2t leaves (since
the queries are not symmetric around k, n2 + k) and so each leaf l has |E+(l)| = n

6 (1 − o(1)) · 2
n
2
−t.

Now see that
PrD[w ∈ E+(l)] =

∑
w

∑
k

PrD[w|k] · Pr[choose k] · 1w∈E+(l)

PrD[w|k] =
1

2
PrP [w|k] =

1

2
· 2−n/2, Pr[choose k] =

1
n
6

=
6

n

PrD[w ∈ E+(l)] =
∑
w

∑
k

1

2
· 2−n/2 · 6

n
· 1w∈E+(l) =

1

2
·

(1 − o(1)) · n
6 · 2n/2−t

n
6 · 2n/2

=

(
1

2
− o(1)

)
· 2−t

3.4 Conclusion

If t = o(
√
n) then the total error satisfies

Total Error on D =
∑
pass l

Pr[w ∈ E−(l)] +
∑
fail l

Pr[w ∈ E+(l)]

Total Error on D ≥
∑
pass l

(
1

2
− o(1)

)
· 2−t +

∑
fail l

(
1

2
− o(1)

)
· 2−t

Total Error on D ≥
∑
l

(
1

2
− o(1)

)
· 2−t

Total Error on D ≥
(

1

2
− o(1)

)
≫ 1

3

And so by Yao’s Principle any algorithm A that passes w ∈ Ln with probability ≥ 2
3 and fails w

ϵ-far from  Ln with probability ≥ 2
3 must use Ω(

√
n) queries, proving the theorem.

4


