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We denote the set {1,2,...,n} by [n].
Our goal for today is testing monotonicity. We consider distributions over domain [n].

1 Introduction

Definition 1 (Monotone decreasing) A distribution p over set {1,2,... ,n} is monotone decreas-
ing, if Vi € {1,2,...,n— 1} holds p(i) > p(i + 1).

Definition 2 (e-far from monotone decreasing) A distribution p over [n] is e-far from being
monotone decreasing, if for every monotone decreasing distribution q over [n], ||p — ¢||1 > €.
As a reminder, |Ip — qllr = 3272, [p(i) — q(4)].

We are looking for a monotonicity tester with the following properties:
e If p is monotone decreasing, pass with probability > %
e If p is e-far from monotone decreasing, reject with probability > %.

Morale time: If you don’t have the strength to stay up at night to work on the problems, you can
still be a researcher!

For testing monotonicity, the following tool will be very useful:

Definition 3 (Birge decomposition) Decompose the domain [n] into | = G(Mg%") ~ 6(10%) inter-
vals If, 15, ... If, such that |If, || = [(1+ €)*]
This decomposition is called Birge decomposition.

Notes:

e The last segment might have a smaller length.

We will drop €-superscription in the future.

e We will use the terms ”intervals,” ”partitions,” ”buckets” interchangeably for Iy, Io, ..., I;.
o O(1) of these intervals have length 1.

Definition 4 (Flattened distribution) For any distribution q on [n], and €, define the flattened dis-
tribution q. as follows:

I
Vj € [l],Vi € I;, define G.(i) = q|(IJ|)’ where ¢(I;) = Z q(7)
J icl;

In other words, we "flatten” the distribution in each of the intervals of Birge decomposition. Note
that it immediately follows that ¢(I;) = ¢(I;).

Let’s also denote the maximum and the minimum probabilities of elements from I; by max;, min;
correspondingly. Note that maz; < min;_;.



2 Proof of Birge’s theorem
Theorem 5 (Birge’s) If q is a monotone decreasing distribution, then ||G. — q||1 < e.

Proof
Consider the error in a single bucket I;. Clearly, it doesn’t exceed (max; — min;) - |I;].
Let’s divide buckets into three groups:

e Size 1 intervals: I; with |I;| =1
e Short intervals: I; with 1 < |I;]| < 1
e Long intervals: I; with L < |I}]

Then our error doesn’t exceed:

!
Z(maacj—minj)-|lj| = Z (max; —ming)-0+ Z (max; —ming)-|1;|+ Z (max; —ming)- ||
J=1 [11=1 1; short 1; long

Disclaimer: The actual proof is very technical and contains many details. We will only give proof
that the error doesn’t exceed O(€), but it should be enough for the intuition and all practical needs.

2.1 Large intervals

So, let’s look at the bound for large intervals. Let’s suppose that I is the first long interval. Then:

l l -1
> (maxy —ming) - || < Y (ming 1 —ming) - L] < ming - [T | + Y ming - ([[3a] = 1))
j=k+1 j=k+1 j=k+1

Now, let’s note that if [I;| > 1, then
Ll =10+ | <A +e) < (L[ + DA +e) = L]+ [le+ (1+€) < |I;] + 3| Lje
So
-1 -1
> ming (Ll =) < Y ming - 3e|Ij]
j=k+1 j=k+1
Note that this sum doesn’t exceed 3e times the area under all long segments, so this doesn’t exceed
3e.

Now, let’s bound miny, - |Ix4+1|. Note that ming(|I1| + [I2]| + ... + [Ix]) < 1. We will show that
|Ik+1| S 46(|I1| + |.[2| + ...+ |Ik|) Indeed:

1 N 1(1+eFf -1 _1
> (146)°+Q4+e) +...+Q+e)f =2 =
IO+l + . T = S (A4 + (L) + .+ (140 ) = o 1« I

Then ming - [Ip41| < de-ming(|I1| + [L2] + ... + |[1x]) < 4e.
So, the error in the long intervals doesn’t exceed Te.



2.2 Short intervals

Now, let’s deal with short intervals — those, for which 1 < |I;| < 1
Again, for segment I}, we will bound error on it by (max; — min;) - |I;| < (min;_ — min;) - |I;].
First, note that all numbers from 2 to L%J appear among the lengths of the intervals. By contradiction,
suppose that some integer k < % doesn’t. Then there is some j such that |[I;| < k —1, |44 > k+ 1.
But then )
(1+¢€)? k+1 _ 1

1 = . 1+ —
+e€ (1+6)371> A +l<:

So k > %, contradiction.
Now, let aj, be the smallest number with |I,,| = k, and ¢ be largest integer smaller than 1. Then,

rewrite:

c j=agt+1—1
Z (min;_1 —min;) - |1;] Z Z k(min;_1 —min;) < 2ming,—1 + mingg—1 + ... + ming, 1
k=2

Ijshort Jj=ak

Let k; be the number of partitions with length 2 < ¢ < ¢. It means that there is some j with
|I;| =i—1and |Ij44,41| =4+ 1. Then

v L+eythe i+1 1
4 et = — > =1+-=
(1+9 T+t = @ 1
Now, write
i+1 k. 1 1
< (1 it < <
S0 s TR ST 1

After taking inverse, this is equivalent to:

a | =

1
1—-

>1—e(k; , ; >
Z+1_1 elki+1) < (ki+1D)(+1) >

From the last inequality it clearly follows that k;i > 4% (for i > 2). The same thing can be said about

k1 (we will omit this bound).
Note that k;i is the total length of intervals of length i. So,

c (& C
) . 1 . .
1> E kit -ming,,, 1 > P E Ming,,,—1 = g MiNg, -1 < 4e

=1 1=1 1=1

It immediately follows that
Z (min;_1 —miny) - |I;| < 2ming,—1 + mingg—1 + ...+ ming,_1 < 8¢
Ijshort

Corollary 6 If q is e-close to monotone decreasing, then ||G. — q||1 < O(€)
Proof Consider some monotone decreasing p with ||¢ — p||1 < e. Then it’s not hard to see that

[|Ge — Dell1 < € too. This follows from the following fact: for any array a,b of length n,

n

Z|ai—bi|2n

i=1

a1 +as+...+ap, _b1+b2—|—...—|—bn
n n




This is just |e1] + |ea| + ...+ |en] > |1 + ¢c2 + ... + ¢nl for ¢; = a; — b;. Then, apply this inequality
to every bucket.

Now, we have the following inequalities: || —p||1 <€, ||[p — Pell1 < € ||Pe — ¢e||1 < €. By the triangle
inequality, we get ||Ge — ¢||1 < 3e. B

3 Monotonicity Tester

3.1 Algorithm

Let’s devise the following testing algorithm. For some €; that we will choose later, do:

1. Take a set S of m = O(y/n - poly(logn, 1)) samples of q.

2. For each Birge partition I}, let S; be the set of samples that fall in I; (S; = SNI;). Do a uniformity
test on each such interval. If greater than e;-fraction of samples are in a failing interval, output
Reject.

[S;1
m

3. Define w; =

as the estimate of ¢(I;).

4. Define ¢* as follows: for all i € I}, ¢*(z) = ﬁ—’l as the estimate of ¢*.

5. Use linear programming to verify that w is €;-close to monotone (note that this is an LP on O(lo%)
variables, so it’s feasible). If it is, output Pass, otherwise Reject.
3.2 Analysis
3.2.1 Monotone decreasing distributions

Consider any monotone decreasing distribution g. We know that ||¢ — ¢¢|| < €, and (with Chernoff
bounds) that it will pass the uniformity test, and that ||gc — ¢*|| won’t exceed e. Then, ¢* will be at
most 2e-far from monotone decreasing.

3.3 e-far from monotone decreasing distributions

If a distribution is likely to pass, then it’s almost uniform on all its Birge’s partitions, and its ¢*
is close to monotone decreasing, so we would get that the distribution itself is also close to monotone
decreasing.

4 Learning monotone decreasing distributions
It turns out that we can learn such distributions up to an e error in the L; error in O(% logn)

samples. The intuition is that, by Birge’s theorem, it’s enough to estimate §., which is constant on
O(lo%) segments.

Happy Halloween!



