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We denote the set {1, 2, . . . , n} by [n].
Our goal for today is testing monotonicity. We consider distributions over domain [n].

1 Introduction

Definition 1 (Monotone decreasing) A distribution p over set {1, 2, . . . , n} is monotone decreas-
ing, if ∀i ∈ {1, 2, . . . , n− 1} holds p(i) ≥ p(i+ 1).

Definition 2 (ϵ-far from monotone decreasing) A distribution p over [n] is ϵ-far from being
monotone decreasing, if for every monotone decreasing distribution q over [n], ||p− q||1 ≥ ϵ.

As a reminder, ||p− q||1 =
∑n

i=1 |p(i)− q(i)|.

We are looking for a monotonicity tester with the following properties:

• If p is monotone decreasing, pass with probability ≥ 3
4

• If p is ϵ-far from monotone decreasing, reject with probability ≥ 3
4 .

Morale time: If you don’t have the strength to stay up at night to work on the problems, you can
still be a researcher!

For testing monotonicity, the following tool will be very useful:

Definition 3 (Birge decomposition) Decompose the domain [n] into l = Θ( log ϵn
ϵ ) ∼ Θ( logn

ϵ ) inter-
vals Iϵ1, I

ϵ
2, . . . , I

ϵ
l , such that |Iϵk+1| = ⌊(1 + ϵ)k⌋

This decomposition is called Birge decomposition.

Notes:

• The last segment might have a smaller length.

• We will drop ϵ-superscription in the future.

• We will use the terms ”intervals,” ”partitions,” ”buckets” interchangeably for I1, I2, . . . , Il.

• Θ( 1ϵ ) of these intervals have length 1.

Definition 4 (Flattened distribution) For any distribution q on [n], and ϵ, define the flattened dis-
tribution q̃ϵ as follows:

∀j ∈ [l],∀i ∈ Ij , define q̃ϵ(i) =
q(Ij)

|Ij |
, where q(Ij) =

∑
i∈Ij

q(i)

In other words, we ”flatten” the distribution in each of the intervals of Birge decomposition. Note
that it immediately follows that q(Ij) = q̃ϵ(Ij).

Let’s also denote the maximum and the minimum probabilities of elements from Ij by maxj ,minj

correspondingly. Note that maxj ≤ minj−1.
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2 Proof of Birge’s theorem

Theorem 5 (Birge’s) If q is a monotone decreasing distribution, then ||q̃ϵ − q||1 ≤ ϵ.

Proof
Consider the error in a single bucket Ij . Clearly, it doesn’t exceed (maxj −minj) · |Ij |.
Let’s divide buckets into three groups:

• Size 1 intervals: Ij with |Ij | = 1

• Short intervals: Ij with 1 < |Ij | < 1
ϵ

• Long intervals: Ij with 1
ϵ ≤ |Ij |

Then our error doesn’t exceed:

l∑
j=1

(maxj−minj) · |Ij | =
∑

|Ij |=1

(maxj−minj) ·0+
∑

Ij short

(maxj−minj) · |Ij |+
∑

Ij long

(maxj−minj) · |Ij |

Disclaimer: The actual proof is very technical and contains many details. We will only give proof
that the error doesn’t exceed O(ϵ), but it should be enough for the intuition and all practical needs.

2.1 Large intervals

So, let’s look at the bound for large intervals. Let’s suppose that Ik+1 is the first long interval. Then:

l∑
j=k+1

(maxj −minj) · |Ij | ≤
l∑

j=k+1

(minj−1 −minj) · |Ij | ≤ mink · |Ik+1|+
l−1∑

j=k+1

minj · (|Ij+1| − |Ij |)

Now, let’s note that if |Ij | ≥ 1
ϵ , then

|Ij+1| = ⌊(1 + ϵ)j⌋ ≤ (1 + ϵ)j ≤ (|Ij |+ 1)(1 + ϵ) = |Ij |+ |Ij |ϵ+ (1 + ϵ) < |Ij |+ 3|Ij |ϵ

So
l−1∑

j=k+1

minj · (|Ij+1| − |Ij |) ≤
l−1∑

j=k+1

minj · 3ϵ|Ij |

Note that this sum doesn’t exceed 3ϵ times the area under all long segments, so this doesn’t exceed
3ϵ.

Now, let’s bound mink · |Ik+1|. Note that mink(|I1| + |I2| + . . . + |Ik|) ≤ 1. We will show that
|Ik+1| ≤ 4ϵ(|I1|+ |I2|+ . . .+ |Ik|). Indeed:

|I1|+ |I2|+ . . .+ |Ik| ≥
1

2
((1+ ϵ)0 +(1+ ϵ)1 + . . .+(1+ ϵ)k−1) =

1

2

(1 + ϵ)k − 1

ϵ
≥ 1

4

(1 + ϵ)k

ϵ
≥ 1

4ϵ
|Ik+1|

Then mink · |Ik+1| ≤ 4ϵ ·mink(|I1|+ |I2|+ . . .+ |Ik|) ≤ 4ϵ.
So, the error in the long intervals doesn’t exceed 7ϵ.
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2.2 Short intervals

Now, let’s deal with short intervals − those, for which 1 < |Ij | < 1
ϵ

Again, for segment Ij , we will bound error on it by (maxj −minj) · |Ij | ≤ (minj−1 −minj) · |Ij |.
First, note that all numbers from 2 to ⌊ 1

ϵ ⌋ appear among the lengths of the intervals. By contradiction,
suppose that some integer k ≤ 1

ϵ doesn’t. Then there is some j such that |Ij | ≤ k − 1, |Ij+1| ≥ k + 1.
But then

1 + ϵ =
(1 + ϵ)j

(1 + ϵ)j−1
>

k + 1

k
= 1 +

1

k

So k > 1
ϵ , contradiction.

Now, let ak be the smallest number with |Iak
| = k, and c be largest integer smaller than 1

ϵ . Then,
rewrite:

∑
Ijshort

(minj−1 −minj) · |Ij |
c∑

k=2

j=ak+1−1∑
j=ak

k(minj−1 −minj) ≤ 2mina2−1 +mina3−1 + . . .+minac−1

Let ki be the number of partitions with length 2 ≤ i ≤ c. It means that there is some j with
|Ij | = i− 1 and |Ij+ki+1| = i+ 1. Then

(1 + ϵ)ki+1 =
(1 + ϵ)j+ki

(1 + ϵ)j−1
≥ i+ 1

i
= 1 +

1

i

Now, write

i+ 1

i
≤ (1 + ϵ)ki+1 ≤ 1

(1− ϵ)ki+1
≤ 1

1− ϵ(ki + 1)

After taking inverse, this is equivalent to:

1− 1

i+ 1
≥ 1− ϵ(ki + 1) ⇐⇒ (ki + 1)(i+ 1) ≥ 1

ϵ

From the last inequality it clearly follows that kii ≥ 1
4ϵ (for i ≥ 2). The same thing can be said about

k1 (we will omit this bound).
Note that kii is the total length of intervals of length i. So,

1 ≥
c∑

l=1

kii ·minal+1−1 ≥ 1

4ϵ

c∑
l=1

minal+1−1 ⇒
c∑

l=1

minal+1−1 ≤ 4ϵ

It immediately follows that∑
Ijshort

(minj−1 −minj) · |Ij | ≤ 2mina2−1 +mina3−1 + . . .+minac−1 ≤ 8ϵ

Corollary 6 If q is ϵ-close to monotone decreasing, then ||q̃ϵ − q||1 < O(ϵ)

Proof Consider some monotone decreasing p with ||q − p||1 ≤ ϵ. Then it’s not hard to see that
||q̃ϵ − p̃ϵ||1 ≤ ϵ too. This follows from the following fact: for any array a, b of length n,

n∑
i=1

|ai − bi| ≥ n

∣∣∣∣a1 + a2 + . . .+ an
n

− b1 + b2 + . . .+ bn
n

∣∣∣∣
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This is just |c1|+ |c2|+ . . .+ |cn| ≥ ∥c1 + c2 + . . .+ cn| for ci = ai − bi. Then, apply this inequality
to every bucket.

Now, we have the following inequalities: ||q− p||1 ≤ ϵ, ||p− p̃ϵ||1 ≤ ϵ, ||p̃ϵ − q̃ϵ||1 ≤ ϵ. By the triangle
inequality, we get ||q̃ϵ − q||1 ≤ 3ϵ.

3 Monotonicity Tester

3.1 Algorithm

Let’s devise the following testing algorithm. For some ϵ1 that we will choose later, do:

1. Take a set S of m = Õ(
√
n · poly(log n, 1

ϵ )) samples of q.

2. For each Birge partition Ij , let Sj be the set of samples that fall in Ij (Sj = S∩Ij). Do a uniformity
test on each such interval. If greater than ϵ1-fraction of samples are in a failing interval, output
Reject.

3. Define ŵj =
|Sj |
m as the estimate of q(Ij).

4. Define q∗ as follows: for all i ∈ Ij , q
∗(i) =

ŵj

|Ij | as the estimate of q∗.

5. Use linear programming to verify that w is ϵ1-close to monotone (note that this is an LP on O( logn
ϵ )

variables, so it’s feasible). If it is, output Pass, otherwise Reject.

3.2 Analysis

3.2.1 Monotone decreasing distributions

Consider any monotone decreasing distribution q. We know that ||q − q̃ϵ|| ≤ ϵ, and (with Chernoff
bounds) that it will pass the uniformity test, and that ||q̃ϵ − q∗|| won’t exceed ϵ. Then, q∗ will be at
most 2ϵ-far from monotone decreasing.

3.3 ϵ-far from monotone decreasing distributions

If a distribution is likely to pass, then it’s almost uniform on all its Birge’s partitions, and its q∗

is close to monotone decreasing, so we would get that the distribution itself is also close to monotone
decreasing.

4 Learning monotone decreasing distributions

It turns out that we can learn such distributions up to an ϵ error in the L1 error in O( 1
ϵ3 log n)

samples. The intuition is that, by Birge’s theorem, it’s enough to estimate q̃ϵ, which is constant on
O( logn

ϵ ) segments.

Happy Halloween!
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