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Lecture 16
Lecturer: Romnitt Rubinfeld Scribe: Anson Hu

Today: hypothesis testing, the cover method.
Previously covered: given samples of a distribution p of domain size n, it is possible to check if

e p = ¢ for known ¢ or e-far in O(y/n) samples
e p is e-close to known ¢ in L, distance or e-far in Lo distance in O(n/logn) samples
e p = ¢ for ¢ given via samples or e-far in Ly in O(n*/3) samples

e p is e-close to ¢ given via samples in L; distance or e-far in Lo distance in O(n/logn) samples

1 Hypothesis testing

Tool: Given a collection of distributions H, of which you have complete knowledge, and samples of a
distribution p such that there exists ¢ in H for which dist(p, ¢) is small, the goal is to output h in H
such that dist(p, k) is small. Our metric is the number of samples in terms of H and the domain size.

Start with the simple case with |H| = 2. hy, hy are given explicitly and p is taken via samples. The
goal is to output whichever h; is closer to p. If ||hy — ha||1 < €, either one can be output.

Theorem 1 : Given p via samples, hy, ho explicitly, an € parameter for accuracy, and a &' confidence
parameter, there is an algorithm “Choose” which takes O(log(4;)/€”?) samples and outputs one of {h1, ha}
which satisfies that if one of {h1,ha} has ||h; — p||1 < €, then with probability > 1 — € the output is h;
such that ||h; — p|]1 < 12¢€.

We will use € ~ €/12. (¢’ is used because down the line it will be needed to pass all tests in a union
bound.)

1.1 Algorithm “Choose”

First, define A = {z|hi(z) > ho(z)}. Think about a simplified example where hy and he only cross
twice:




Call these regions Ry, Ro, R3. Let a1 = h1(A) and as = ha(A). We can see that a; = Ry + Ra,
az = Ry, and Ry = R3 = a1 — as. Notice that Ry = R3 because the sum of probabilities is equal to 1
for hy and ho, and therefore the ”additional” probability R; gained by h; over A must be gained by hs
over the remainder of the domain.

The L, distance between hy and hs is Ry + R = 2R; = 2(a; — ag).

The algorithm “Choose” does the following:

1. if a; — ag < 5€/, declare a tie and return h;. (No samples are taken.)

2. draw m = %ﬁﬂs/) samples S ... S,, from p.

3. let a = L1|i[S; € A|. (In other words « is the fraction of samples in A.)

4. if > a1 — (3/2)€, return hy, else if @ < as + (3/2)€’ return ho, else there is a tie and return h;.

We need that a; — (3/2)€' > ag + (3/2)€’ to make these regions exclusive, which means that a; >
as + 3¢’. This is enforced by step 1.

Behavior

If hy or hs is € close to p, then if there is a tie in step 1, the L; distance between the two is at most
10€¢’ and then ||p — H;||1 < 11€/, so we are good.

(Side note: total variation distance is used in some papers; it just means half of L; distance.)

Otherwise, we reach step 2, and L, distance between the two is > 10¢’. E[a] = Prye,lz € A] = p(A).
By Chernoff bound on the number of samples, with high probability | — E[a]| < €'/2. hy assigns a;
weight to A, and ho assigns as weight to A. If p is €¢/-close to hp, it assigns > a; — € weight to A,
which implies & > a1 — €/ — €/ /2 = a3 — (3/2)€’. Therefore h; is output with high probability. The same
argument holds for hg in the other direction. We have demonstrated that the algorithm has correct
behavior.

1.2 A first attempt at arbitrary-size |H|

We will try to run this as a subroutine where we reuse samples when plugging into “Choose”. The plan

is to use union bound since the runs are dependent. The probability of a run being bad is at most ¢,

therefore we need k¢’ to be small, where k is the number of times we run it. Therefore we need ¢’ =~ 1/k.
We can try a tournament method as such in the image:
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However, this is not good, since at each level we gain a factor of 11 of error (for example, if p = hq but
ho passes, the distance of hy could be up to about 11€¢/. A similar argument holds as we advance down
the tournament tree, so the final winner of the tournament could have as far as ||p— huwinner||1 < 111981

Now, we instead try to test all pairs. Then we can see that the distribution closest to p never loses,
and we want to show that things 11 apart will lose to the winner. We will modify the choose spec: if
h; > 12¢’-far from p, then it will likely lose, and if h; > 10¢’-far, then it is likely to tie or lose.



2 The cover method

Definition 2 C' is an e-cover of D, where both C and D are collections of distributions and C is smaller,
if Vp € D, 3q € C such that ||p — q|]1 < e.

Theorem 3 Given a cover C of D, there exists an algorithm, given p € D, which takes O(% log|C|)
samples of p and outputs h € C such that ||h — p1||1 < 12€ with probability > 9/10.

Proof Run “Choose” on p with every pair (g1,¢2) € C, the best gop ties or wins all matches. If
¢’ > 12e-far from p, then it is at least 1le-far from g,p,. W

2.1 Examples

Finding the bias of a coin. The coin has domain {0,1} and D = [0,1]. Use C = {0,1/k,2/k...k/k}.

Vp, use p < closest i/k, so ||p — pl||1 < 1/k.

k=01/e¢) = |lp—pll1 <€]|C|=k+1=0(1/¢), and therefore the number of samples taken by the
cover method is O(Z log 1).

3-bucket distributions. |C| = ©(1/¢?), since we have to pick pairs of («, 3), and the algorithm takes
O(% log 1) samples.

Monotone distributions. By Birge’s theorem, C' = {i1/k .. .d10g1/e/k}, where the is are in {0...k}.
|C| = ©(<ma577), s0 the number of samples is O(Z% - logn - log 1).

Poisson binomial distribution. X = > x;, where z; is an indicator variable for a coin with bias p;.
The p; are independent but not identically distributed. For example, where p1 =1/2,p2 = 1,p... =0,
Prjz =0] =0,Prjz = 1] = 1/2.




