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1 Approximate Average Degree

1.1 Problem Setup

Let’s first formally state the problem:

Problem 1. Given a graph G = (V,E), an approximation parameter ε ∈ (0, 1), and a confidence
parameter δ ∈ (0, 1). The goal is to output a d̃ such that

Pr
[
|d̃− d̄| ≤ εd̄

]
≥ 1− δ.

where d̄ = 2m
n is the average degree of the graph.

Throughout the lecture, we will have the following assumptions:

• The average degree d̄ ≥ 1.

• We are given access to the following two queries:
1. “degree queries”: Given v ∈ V , output deg(v)
2. “neighbor queries”: Given (v, j) ∈ V × N, output j-th neighbor of v.

1.2 Lower bound

Recall in the last lecture, we have shown that when the average degree is very small, it requires Ω(n)
many queries. For example, considering to distinguish the graph with a single edge and the graph with
no edge.

Here, we (informally) show a lower bound of Ω(
√
n) queries. Let’s consider the following two graphs:

The cycle graph with n nodes Cn has average degree d̄ = 2. We construct another graph G consists of
two connected components where one is a cycle graph with n−c

√
n many nodes and the other component

is a clique with c
√
n many nodes. Then, the average degree for this graph is

d̄ =
2m

n
=

2
((
c
√
n

2

)
+ n− c

√
n
)

n
=

2n+ c2n− c
√
n

n
= 2 + c2 − c√

n
≈ 2 + c2.

However, to distinguish these two graphs, the algorithm at least needs to sample one node from the
clique. This shows Ω(

√
n) many queries are necessary.

In today’s lecture, we will show Õ(
√
n) many queries suffice.

1.3 Algorithm

1.3.1 Warm-up: Almost regular graphs

Let’s consider a slightly easier problem: Assume each node has degree in [∆, 10∆].
It’s easy to see that the algorithm above has runtime O( 1

ε2 log(1/δ)).

Now, we show d̃ is a good approximation for the average degree.

Claim 2. The output d̃ is an unbiased estimator: E[d̃] = d̄.
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Algorithm 1 Approximating Degree for almost regular graphs

1: k ← 50
ε2 log(2/δ)

2: for i = 1, . . . , k do
3: Pick vi ∈u V . We use x ∈u D to denote x is chosen uniformly at random from set D
4: Xi ← deg(vi)
5: end for
6: return d̃← 1

k

∑k
i=1Xi

Proof.

E[d̃] =
1

k

k∑
i=1

E[Xi] (linearity of expectation)

= E[Xi] (i.i.d)

=
∑
v

Pr[vi is picked] · deg(vi)

=
1

n
·
∑
v

deg(vi)

=
2m

n
= d̄

Claim 3. The output d̃ satisfies the requirement of Problem 1: Pr
[
|d̃− d̄| ≤ εd̄

]
≥ 1− δ.

Before we proceed, let’s introduce todays’s Chernoff bound:

Theorem 4 (Hoeffding’s inequality). Y1, . . . , Yk are independent random variable’s such that Yi ∈ [0, 1]

and Y =
∑k
i=1 Yi. For b ≥ 1, we have

Pr [|Y − E[Y ]| > b] ≤ 2 · exp(−2b2/k).

Now, we are ready to prove the claim above.

Proof of Claim 3. By the assumption of almost regular graph, Xi’s are in [∆, 10∆]. Let Zi ← Xi

10∆ and

Z =
∑
i Zi, then we have Zi ∈ [0, 1] and d̃ = 10∆

k Z.

Note that E[Z] = k
10∆E[d̃] = kd̄

10∆ . This implies∣∣∣d̃− d̄∣∣∣ ≤ εd̄ ⇐⇒ ∣∣∣∣10∆

k
Z − 10∆

k
E[Z]

∣∣∣∣ ≤ εd̄ ⇐⇒ |Z − E[Z]| ≤ εd̄ · k

10∆
.

Using Theorem 4 above on Z, with b = k
10∆εd̄, we get

Pr

[
|Z − E[Z]| ≥ k

10∆
εd̄

]
≤ 2 exp(−2

ε2d̄2k2

100∆2k
) ≤ 2 exp(− 1

50
kε2) ≤ δ

where second last step follows by d̄2/∆2 ≥ 1 by assumption, and the last step follows by choice of k.
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1.3.2 General Case

From Markov’s inequality, we know that at most a 1/C fraction of nodes have degree larger than Cd̄.
This implies most nodes satisfy the warm up case! However, the rest of nodes can have large degrees.
To cope with this, we define a new notion of degree, denoted by deg+(·).

We first assign a total order on the nodes of graph by assuming each node has a unique ID, then the
order is given by the ID.

Definition 5. Given two nodes u, v ∈ V , we say u ≺ v if

• deg(u) < deg(v)

• or deg(u) = deg(v) and u has smaller ID than v.

Then, we define deg+(u) as the number of nodes v in u’s neighborhood such that u ≺ v.

Intuitively, if we orienting edges from small to large, the deg+(·) count the “out-edges”. Then, this
directly implies ∑

u∈V
deg+(u) = m =

nd̄

2
. (1)

The benefits of having this notion is that the newly defined degree cannot be too large for any node
in the graph:

Claim 6. For any node v ∈ V , deg+(v) ≤
√

2m.

Proof. We define the vertex set H ⊆ V to be
√

2m nodes with highest rank (degree) w.r.t. ≺. For any
v ∈ H, deg+(v) ≤

√
2m. since edge leaving v go to bigger nodes, must be also in H.

For any v ∈ V \H, we will show deg+(v) ≤ deg(v) ≤
√

2m. For the sake of contradiction, we assume
deg(v) >

√
2m, then all w ∈ H have deg(w) ≥ deg(v), Then, we have total degree ≥ |H| · deg(v) ≥√

2m ·
√

2m = 2m but total degree is 2m. This is a contradiction.

Now, we present our algorithm for the general case.

Algorithm 2 Approximating Degree

1: k ← 16
ε2
√
n

2: for i = 1, . . . , k do
3: Pick vi ∈u V . Step 1
4: Pick ui ∈u N(vi) . Step 2

5: Let Xi =

{
2 deg(vi) if vi ≺ ui
0

6: end for
7: return d̃← 1

k

∑k
i=1Xi

Claim 7. Xi is an unbiased estimator of d̄: E[Xi] = d̄.
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Proof.

E[Xi] =
∑
v∈V

Pr[v picked in 1 ] · E[Xi | v picked in 1 ]

=
1

n

∑
v∈V

∑
u∈N(v)

Pr[u pickied in 2 ] · E[Xi | v picked in 1 and u picked in 2 ]

=
1

n

∑
v∈V

∑
u∈N(v),v≺u

1

deg(v)
· 2 deg(v)

=
2

n

∑
v∈V

deg+(v)

= d̄.

where the third step follows by definition of Xi given in Algorithm 2, the fourth step follows by definition
of deg+(·), and the last step follows by Equation (1).

In the next lecture, we will show Var[Xi] is small by using the upper bound on deg+(·).
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