6.5240 Sublinear Time Algorithms October 3, 2022

Lecture 7
Lecturer: Ronitt Rubinfeld Scribe: Lily Chung

Today we will finish planarity testing, and talk a bit about testing properties of dense graphs. As
usual we consider a graph G = (V, E) with maximum degree d, number of vertices |V| = n, and number
of edges |E| = m.

1 Planarity Testing

The algorithm presented in this lecture is from [2]. Note that while we will discuss planar graphs for
brevity, these results also apply to other classes of graphs, such as any class of graphs with a forbidden
minor. Recall the following definitions and results from last lecture:

Definition 1 A graph G is (e, k)-hyperfinite if it is possible to remove at most en edges from G to
produce a graph where every connected component has size at most k.

Theorem 2 (Follows from Proposition 4.1 in [1]) For all € and §, there exists a constant ¢ so that
every planar graph of degree at most d is (ed,c/e*)-hyperfinite.

This definition says that it is possible to break up planar graphs, but does not say how to do so. We
need a partition oracle to tell us how to do the partitioning.

Definition 3 A partition oracle is a function which, given a vertex v and a parameter €, outputs the
name of a part Plv] CV such that |Plv]| < k and P[v] is connected. Furthermore, if G is planar, then
with probability at least 9/10, the number of edges connecting different parts

{(u,v) € E| P(u) # P(v)}|
is at most edn/4.

Note that a partition oracle works on all graphs, but the bound on the number of crossing edges
holds only for planar graphs. Last lecture we showed that given a partition oracle, we can test if a graph
is planar or e-far from planar. The idea was to sample random parts and count the number of edges
between them. There was some difficulty because of the fact that it wasn’t possible to sample random
parts, but only to sample random vertices.

In this lecture we will show how to implement a partition oracle.

1.1 Implementing a Partition Oracle

We will first describe the partitioning process as a global algorithm, and then show how it can be
simulated locally. We start with a definition:

Definition 4 An induced subgraph S of G is a (k,)-isolated neighborhood of a vertez v if
eveES
o S is connected
o |S| <k

e The number of edges between S and V' \ S is at most §|5)|.

Algorithm 1 Global Partitioner
1: 7 ...7m, < arandom permutation on V'
2: P« ()
3: for ¢ from 1 to n do
4: if m; is still in the graph then

5: if 7; has a (k,d)-isolated neighborhood then

6: S; < this neighborhood

7 else

8: S; {mi} > Bad case
9: end if

10: P+ PU{S;}

11: Remove S; and all incident edges from the graph.

12: end if

13: end for

14: return P

The idea of the partitioning process is to carve away a single isolated neighborhood at a time from
the graph, removing it. After each removal the graph remains planar. Each isolated neighborhood S;
will become a part of the partition and the total number of edges between different parts will be at most
>, 0|Si| = én, which is what we want. The problem is that not every node has an isolated neighborhood,
but luckily only a small number do not. The global partitioning algorithm based on this intuition is
given in Algorithm 1.

It is clear from definitions that this algorithm satisfies the first two properties of a partition oracle.
We must now show that if GG is planar, then P has a small number of crossing edges.

It follows from similar reasoning to before that the contribution of crossing edges from the cases
where 7; has a (k, §)-isolated neighborhood is at most én. The contribution from the other cases is at
most dr, where 7 is the number of nodes which do not have (k, §)-isolated neighborhoods. Thus we wish
to bound 7.

Lemma 5 Let G' = (V' E’) be a subgraph of a planar graph G with |V'| > on. Then the number of
vertices in V' which do not have (k,§)-isolated neighborhoods is at most €|V'|/30, where § = ¢/30 and
k=0(1/€e).

Note that the parameters § and k have no dependence on n. We won’t prove this lemma exactly but
we will give the idea:
Proof Idea Since G’ is planar, it is hyperfinite. Thus there exists a partition such that the overall
number of crossing edges is small. Therefore most of the parts must in fact be isolated neighborhoods
by Markov’s inequality. B

This lemma gives us the bound on r necessary to show that the above algorithm is a partition oracle.
We will elide the precise details and move on to showing that this global algorithm can be simulated
locally.

1.2 Local Simulation of Global Partitioner

The local simulation is given in Algorithm 2. We assume we are given an oracle for 7, a function which
randomly assigns a rank to each vertex of the graph. Note that we need to query the ball of size 2k
instead of k because on line 11 we need to ignore vertices which already belong to other parts.

Since we can make further queries during the recursive call, we must bound the cost of the recursion.
A similar analysis (which we omit here) to that in the lecture on maximal matching shows that the

Algorithm 2 Local Partitioner

1: On input v:

2: Query the ball Bay(v) of radius 2k around v.

3: for w € Byy(v) do

4: if 7(w) < w(v) then

5: Recursively compute P[w] > This recursion may induce further queries outside Bay(v).

6: end if

7: end for

8: if there exists w with m(w) < 7(v) and v € P[w] then

9: return Pv] = Plw]

10: else

11: Use brute force within By (v) to find a (k,d)-isolated neighborhood of v, ignoring all vertices
which already belong to some Plw] with 7(w) < 7 (v).

12: if such an isolated neighborhood exists then

13: return P[v] = the isolated neighborhood

14: else

15: return Pv] = {v}

16: end if

17: end if

overall cost is 247" queries for k = 0(1 /€3). Note that the query complexity does not depend on n. It
is known that this query complexity can be improved to d9((log1/ 9%,

2 Property Testing in Dense Graphs

We now change subjects and consider the problem of testing properties in dense graphs, where the graph
is given in the adjacency-matrix representation and we are not given a bound on the maximum degree.
Recall that the adjacency matrix A of a graph G = (V, E) is an n X n matrix whose rows and columns
are indexed by the vertices V. It is defined such that A, is 1 if (u,v) € E and 0 otherwise. We assume
we are given query access to the cells of A, but we do not have degree queries or next-neighbor queries.

In dense graphs, we define G to be e-far from a property P if greater than en? entries of A would
need to change in order to make G into a graph with property P. A perhaps surprising consequence of
this definition is that, for instance, all sufficiently-large graphs are e-close to connected.

In the next lecture, we will show how to distinguish bipartite graphs from graphs which are e-far from
bipartite. Recall that a graph is bipartite if there exists a coloring of its vertices with two colors such
that no edge is monochromatic. Equivalently, a bipartite graph is one whose vertices can be partitioned
into two parts V; and V, such that no edge has both its endpoints in a single part. Given a (possibly
improper) coloring of a graph, we say that a monochromatic edge is a violating edge. Thus a graph is
e-far from bipartite if and only if any 2-coloring of the graph has more than en? violating edges.

The main idea for testing bipartiteness will be to pick a random sample of nodes, and check if the
induced subgraph on these nodes is bipartite. If it is not, then the original graph cannot be bipartite.

References

[1] Noga Alon, Paul Seymour, and Robin Thomas. “A Separator Theorem for Graphs with an Excluded
Minor and its Applications”. In: Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing. 1990, pp. 293-299.

[2] Avinatan Hassidim et al. “Local Graph Partitions for Approximation and Testing”. In: Oct. 2009,
pp- 22-31. por: 10.1109/F0CS.2009.77.

