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In this lecture, we study two applications of property testing for dense graphs. We model edges
of graph G with an adjacency matrix A, where

Auv =

{
1 if (u, v) edge

0 otherwise.

First, we prove a sublinear time algorithm for bipartite testing, and second, we begin to discuss a
sublinear time algorithm for triangle-free testing.

1 Bipartite Testing

1.1 Setup

In this problem, we receive input graph G and adjacency matrix A. The goal is to find a sublinear
time bipartite tester that will:

1. Accept if G is bipartite

2. Reject if G is ϵ-far from bipartite with probability ≥ 2/3.

Recall that a graph G is ϵ-far from property P if > ϵn2 entries in A must be changed to turn G into
a member of P .

1.2 Algorithm

The following algorithm satisfies the desired properties of a bipartite tester. Recall that the notation
G[S] denotes the induced subgraph of G on S.

Algorithm 1 Bipartite Tester

Randomly sample set S of Θ( 1
ϵ2 · log(

1
ϵ )) nodes.

Accept if G[S] is bipartite, reject otherwise.

First, we show correctness.
Note that for any bipartite graph G = V1 ⊔ V2, any induced subgraph G[S] is also bipartite

because we can split S into S ∩ V1, S ∩ V2. Thus the algorithm always accepts.
Now, the goal is to show correctness for the ϵ-far case, which we state in the following theorem.

Theorem 1 If G is ϵ-far from bipartite, the bipartite tester algorithm rejects with probability ≥ 2/3.

Before proving Theorem 1, we first discuss a failing proof idea that motivates the correct proof.

Definition 2 We say edge e = (u, v) violates partition V = V1 ⊔ V2 if u, v ∈ V1 or u, v ∈ V2.

An initial idea is to use the most basic bound on Pr[G[S] has no violating edge e for V1 ⊔V2]. Since
G is ϵ-far from bipartite, there are > ϵn2 violating edges for V1 ⊔ V2, so an arbitrary edge violates
V1 ⊔V2 with probability ≥ ϵ. The induced subgraph G[S] has at least |S|/2 independent edges, thus

Pr[G[S] has no violating edge e for V1 ⊔ V2] ≤ (1− ϵ)|S|/2.
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This idea fails because there are 2n partitions V1 ⊔ V2, so union bounding gives

Pr[G[S] has violating edges e for all V1 ⊔ V2] ≥ 1− 2n(1− ϵ)|S|/2.

It turns out this bound is not good enough and we would need |S| ≥ Ω(nϵ ) for this to be suffi-
cient. The idea for our new proof will be to bypass this 2n factor by focusing on a smaller set of
representative partitions.

Proof of Theorem 1
Goal: Show that if G is ϵ-far from bipartite, G[S] is not bipartite with probability ≥ 2/3.

We first identity the central subset of representative partitions that will bypass the 2n factor.
These will be the partitions of a set C, where C consists of the first Θ

(
1
ϵ · log

1
ϵ

)
vertices of S. More

specifically,

C ⊆ S, |C| = Θ

(
1

ϵ
· log 1

ϵ

)
.

Note that there are now 2|C| partitions instead of 2n. Looking ahead, it will be important that we
chose S to have size |S| = Θ( 1ϵ |C|).

Definition 3 Edge e = (u, v) ruins partition C = C1 ⊔ C2 if u, v ∈ N(C1) or u, v ∈ N(C2).

The key observation is the following.

Observation 4 If edge e ∈ G[S] ruins C1 ⊔C2, every partition S = S1 ⊔ S2 with C1 ⊆ S1, C2 ⊆ S2

will have a violating edge in G[S].

Proof Without loss of generality, suppose u, v ∈ N(C1). Then u neighbors u′ ∈ C1 and v neighbors
v′ ∈ C1. Note that since u, v, u′, v′ ∈ S, edges (u, v), (u, u′), (v, v′) are all in G[S]. If (u, u′), (v, v′)
are not violating, then u, v must both be in C2. However, this means (u, v) is violating, thus one of
these three edges is always a violating edge for S1 ⊔ S2.

This observation is useful because it implies that G[S] is not bipartite if every partition C =
C1 ⊔ C2 has a ruining edge. The next claim naturally follows.

Claim 5 With probability ≥ 2/3, every partition C = C1 ⊔ C2 has a ruining edge e ∈ G[S].

To prove this claim, we will need to use the fact that G is ϵ-far from bipartite. Thus, we transition
from considering partitions of C to partitions of the entire vertex set V , because each partition has
> ϵn2 violating edges.

Fix C = C1 ⊔ C2, and define V = V1 ⊔ V2 by taking V1 = N(C2), V2 = V \V1. The idea for this
proof will be to use V1 ⊔V2’s violating edges to upper bound Pr[C1 ⊔C2 has no ruining edge]. After
bounding this quantity, we will then be able to union bound over these events to get an upper bound
for Pr[∃ partition with no ruining edge]. To do this, we first need to prove a few more observations
and lemmas.

Observation 6 If edge e = (u, v) violates V1 ⊔ V2 and u, v ∈ N(C), then e is a ruining edge for
C1 ⊔ C2.

Proof We consider the two cases of whether u, v are in V1 or V2.
If u, v ∈ V1, then by definition V1 = N(C2) implies e ruins C1 ⊔ C2.
If u, v ∈ V2, we have u, v ∈ N(C) but u, v /∈ N(C2), thus u, v ∈ N(C1), and e is again a ruining

edge.

Let X be the number of edges in G with some endpoint not in N(C). We will next lower bound
the number of edges ruining C1 ⊔ C2 in terms of X.
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We know that for graphs G ϵ-far from bipartite, any partition V1 ⊔V2 has > ϵn2 violating edges.
Combining this with Observation 6,

[# edges ruining C1 ⊔ C2] ≥ [#e = (u, v) violating V1 ⊔ V2 with u, v ∈ N(C)]

= [#e violating V1 ⊔ V2]− [#e violating V1 ⊔ V2 with u or v in V \N(C)]

≥ ϵn2 − [#e with u or v in V \N(C)]

= ϵn2 −X.

Now we bound X. Say vertex v is low degree if deg(v) < ϵn
3 , and high degree if deg(v) ≥ ϵn

3 . We
bound the contribution to X from low and high degree vertices.

The low degree vertices contribute ≤ n · ϵn3 = ϵn2

3 edges, because each low degree vertex has at
most ϵn

3 edges.
The high degree vertices satisfy the following lemma.

Lemma 7 With probability ≥ 5/6, the number of high degree vertices v /∈ N(C) is ≤ ϵn
3 .

Proof Fix a high degree vertex v. Each u ∈ C has ≥ ϵ
3 chance of being adjacent to v, thus

Pr[v /∈ N(C)] ≤
(
1− ϵ

3

)|C|

≤ e−ϵ|C|/3

≤ ϵ

18
,

where the last line follows from the taking constant for |C| = Θ( 1ϵ · log
1
ϵ ) large enough. Thus,

E[# high degree vertices v /∈ N(C)] ≤ ϵn

18
.

Finally, by Markov’s Inequality,

Pr
[
# high degree vertices v /∈ N(C) ≥ ϵn

3

]
≤ ϵn/18

ϵn/3

= 1/6,

as desired.

Therefore with probability ≥ 5/6, there are at most ϵn
3 high degree vertices which each have at

most n edges, for a total of ϵn2

3 edges.

Thus with probability ≥ 5/6, X ≤ ϵn2

3 + ϵn2

3 = ( 2ϵ3 )n
2. Now we are ready to prove Claim 5.

Proof of Claim 5: Suppose the event of Lemma 7 occurs. Then, X ≤ ( 2ϵ3 )n
2, so

[# edges ruining C1 ⊔ C2] ≥ ϵn2 −
(
2ϵ

3

)
n2 =

ϵn2

3
.

Now, for any partition C = C1 ⊔ C2, considering |S|/2 pairs of independent edges gives

Pr[no edge e ∈ G[S] ruins C1 ⊔ C2] ≤
(
1− ϵ

3

)|S|/2
(1)

≤ e−ϵ|S|/6 (2)

≤ e−Θ(|C|) (3)

≤ 2−|C|

6
, (4)
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where (2) to (3) follows from |S| = Θ( 1ϵ · |C|) and (3) to (4) follows from taking constant in

|S| = Θ(|C|) large enough. Taking a union bound over all 2|C| partitions C = C1 ⊔ C2,

Pr[∃ C = C1 ⊔ C2 which has no ruining edge e ∈ G[S]] ≤ 2|C| · 2
−|C|

6

=
1

6
.

We use union bound once more with the probability ≤ 1/6 that Lemma 7 fails, to get that with
probability ≤ 1/3, there exists a partition C1 ⊔ C2 with no ruining edge. Thus with probability
≥ 2/3, every partition C = C1 ⊔ C2 has a ruining edge, completing the proof of Claim 5.

Now, Claim 5 and Observation 4 together imply that with probability≥ 2/3, G[S] is not bipartite,
concluding the proof of Theorem 1.

The runtime of this algorithm is Θ(|S|2) = Θ( 1
ϵ4 log

2( 1ϵ )), which comes from querying all the
edges in G[S]. These edges are needed for checking if G[S] is bipartite, which can be done with
a simple greedy algorithm over the Θ(|S|2) edges. It turns out this runtime can be dropped to
approximately Θ( 1

ϵ2 ) with a different algorithm that only requires querying edges in C.

2 Triangle-free Testing

2.1 Setup

In this problem, we explore sublinear time property testing for whether a graph is triangle-free.

Definition 8 For graph G = (V,E), a set of vertices (u, v, w) is a triangle if edges (u, v), (v, w), (w, u)
are all in E.

We say a graph G is triangle-free if no three vertices form a triangle. The goal is to find a
sublinear time triangle-free tester that will:

1. Accept if G is triangle-free

2. Reject if G is ϵ-far from triangle-free with probability ≥ 2/3.

2.2 Algorithm

The following algorithm tests if a graph is triangle-free.

Algorithm 2 Triangle-Free Tester

t← some sublinear parameter
for t iterations do

Sample vertices (u, v, w) and check if it is a triangle
Reject if yes

end for
Accept

Observe as a baseline that t = O(n3) would work by checking most of the O(n3) triples of vertices
with high probability. What we will show is that this algorithm also works for t = f(ϵ), where f is
some function of ϵ.
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2.3 Analysis Overview

Our goal is to show this algorithm works for t = f(ϵ). This will follow from the next lemma.

Lemma 9 (Triangle Removal Lemma) For all ϵ > 0, there exists δ > 0 such that for any graph
G that is ϵ-far from triangle-free, G has at least δn3 triangles.

Note that given this lemma, taking t = O( 1δ ) is sufficient for Triangle-Free Tester because the prob-

ability of drawing no triangles will be ≤ (1− δ)O( 1
δ ) ≤ e−δO( 1

δ ), which can be made sufficiently small
with large enough constant.

The remainder of this lecture discusses two important lemmas necessary for the proof of the
Triangle Removal Lemma, which we will complete next class. Intuitively, the two lemmas are:

• Szemerédi Regularity Lemma (SRL): Every graph is “close” to a “random-like” graph.

• Triangle Counting Lemma: A “random-like” graph that is dense has many triangles.

To understand what a “random-like graph” is and formally state these two lemmas, we provide
some definitions.

2.4 Definitions

First, we define a random graph.

Definition 10 Let X,Y, Z be sets of nodes. A random graph G on X ⊔ Y ⊔ Z is constructed by
adding each edge

(x, y) ∈ X × Y with probability pxy,

(y, z) ∈ Y × Z with probability pyz,

(z, x) ∈ Z ×X with probability pzx,

where pxy, pyz, pzx are constants and each edge is added independently.

Observe that in a random graph,

Pr[(x, y, z) ∈ X × Y × Z is a triangle] = pxypyzpzx,

and the expected number of triangles is

E[# triangles] = pxypyzpzx|X||Y ||Z|.

Fix graph G and X,Y ⊆ V (G). We also define the following terminology.

Definition 11 Define e(X,Y ) = |{(x, y) ∈ X × Y | (x, y) is an edge in E(G)}|.

Definition 12 Define the edge density between X and Y to be

d(X,Y ) =
e(X,Y )

|X||Y |
.

Definition 13 The pair of vertex sets (X,Y ) is called ϵ-regular if for all A ⊆ X,B ⊆ Y with
|A| ≥ ϵ|X| and |B| ≥ ϵ|Y |,

|d(A,B)− d(X,Y )| < ϵ.

Definition 14 The partition V = V1 ⊔ V2 ⊔ · · · ⊔ Vk is called a ϵ-regular partition if∑
i≤i,j≤k

(Vi,Vj) not ϵ-regular

|Vi||Vj | ≤ ϵn2.

We are now ready to state the Szemerédi Regularity Lemma and the Triangle Counting Lemma.
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2.5 Lemmas

We first state the Szemerédi Regularity Lemma, which intuitively states that every graph is “close”
to a “random-like” graph.

Lemma 15 (Szemerédi Regularity Lemma) For any ϵ > 0 and positive integer m, there exists
integer M such that any graph G with at least M vertices has an ϵ-regular partition on k parts,
where m ≤ k ≤M .

The proof of this theorem is long and is left out of this class.
Next, we state and prove the Triangle Counting Lemma. Recall that the informal statement was

that a “random-like” graph that is dense has many triangles. The formal definition is as follows.

Lemma 16 (Triangle Counting Lemma) Suppose X,Y, Z ⊂ V (G) are vertex sets that are pair-
wise ϵ-regular with edge densities dXY , dY Z , dZX ≥ 2ϵ. Then, the number of triangles in X × Y ×Z
is at least

(1− 2ϵ)(dXY − ϵ)(dY Z − ϵ)(dZX − ϵ)|X||Y ||Z|.

Proof Let SY be the set of vertices in X which have < (dXY − ϵ)|Y | neighbors in Y . Observe
that |SY | ≤ ϵ|X|; otherwise (SY , Y ) contradicts (X,Y ) being ϵ-regular.

Similarly, let SZ be the set of vertices in X which have < (dXZ−ϵ)|Z| neighbors in Z. By similar
reasoning, |SZ | ≤ ϵ|X|.

Now take X ′ = X \ (SY ∪SZ), X
′ has at least (1−2ϵ)|X| vertices. Additionally, for each x ∈ X ′,

x /∈ SY , SZ implies that
|NY (x)| ≥ (dXY − ϵ)|Y |

|NZ(x)| ≥ (dXZ − ϵ)|Z|.

Finally, (Y,Z) is ϵ-regular, implying that d(NY (x), NZ(x)) ≥ dY Z − ϵ.
Combining all these observations, for each of the at least (1 − 2ϵ) vertices x ∈ X ′, there are at

least (dXY − ϵ)|Y |(dZX− ϵ)|Z| pairs of edges to NY , NZ , and (dY Z− ϵ) of these are connected across
Y and Z. This gives a total of

≥ (1− 2ϵ)|X|(dXY − ϵ)|Y |(dZX − ϵ)|Z|(dY Z − ϵ)

= (1− 2ϵ)(dXY − ϵ)(dY Z − ϵ)(dZX − ϵ)|X||Y ||Z|

triangles, as desired.

The Szemerédi Regularity Lemma and the Triangle Counting Lemma will be used to prove the
Triangle Removal Lemma next class.
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