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1 Polynomial Identity Testing

Given two polynomials P and Q, we want to know whether P ≡ Q. We begin with some definitions.

Definition 1. The total degree of a multivariate polynomial P is the maximum degree of any term in
P , where the degree of a particular term is the sum of the variable exponents.

For example, the total degree of x2
1x

3
2x3 + x6

1x2x4 is 8, as opposed to the maximum degree of any
variable in the terms, which is 6. For the remainder of this lecture we use degree to mean total degree.

An easy way of checking whether two polynomials are equal is to expand them, then compare term
by term. However, expanding the polynomials (e.g. (x + y)29z − (x − y)20z2) could result in exponen-
tially many terms. Instead, we give a randomized algorithm that can check for polynomial equality in
polynomial time. The algorithm that we give works for any representation of the polynomial; we just
assume that we have a black box which evaluates P (x) and Q(x). Note that P ≡ Q iff P −Q ≡ 0, and
so we instead give an algorithm to check if a polynomial is identically zero, i.e. ∀x, P (x) ≡ 0.

1.1 Univariate polynomials

We start by giving an algorithm for polynomial identity testing on univariate polynomials, and will later
show how to extend this algorithm to multivariate polynomials. Let d be the degree of the univariate
polynomial P . Assume that this polynomial is over a field F , e.g. Zp (the field of integers modulo prime
p). If P 6≡ 0, then P has at most d roots. One approach would be to pick any d + 1 points and evaluate
P on them. If P 6≡ 0, at least one of these d + 1 points must be a non-root. As we show later, one must
be careful with generalizing this approach to multivariate polynomials. Instead, we give a randomized
algorithm, independently discovered in the late 1970’s by DeMillo and Lipton, Schwarz, and Zippel. The
general idea is to evaluate the polynomial at random points selected from a sufficiently large range. If
any of these values are non-zero, then we report that the polynomial is not identically zero.

Definition 2. The notation x ∈R S means that x is sampled uniformly at random from the set S.
Likewise, if U is a distribution, then x ∈R U means that x is sampled from the distribution U .

Let S be an arbitrary subset of F such that |S| ≥ 2d. Since P has at most d roots in F , at most
d of the |S| points will evaluate to zero, and |S| − d ≥ d points will be non-roots (will not evaluate to
zero). Thus, if P 6≡ 0, then x ∈R S will give a non-root with probability at least d

2d = 1/2. To make the
probability of error small, repeat.

1.2 Multivariate polynomials

Now assume that the polynomial P is over n variables x1, . . . , xn, and let d be its total degree. Testing
polynomial identity for multivariate polynomials is harder because there are many more roots. For
example, P (x1, x2) = x1x2 has infinitely many roots in R, and p roots in Zp. Also, as we mentioned
earlier, expanding the polynomials into monomials could result in

(
n
d

)
terms, so comparing them term

by term would take time exponential in d.
Algorithm:

1. Let S ⊆ F , such that |S| ≥ 2d (S chosen arbitrarily.).

2. Choose x1, . . . , xn ∈R S.

3. If P (x1, . . . , xn) = 0, output “≡ 0”, else “ 6≡ 0”.
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Claim 3. For x1, . . . , xn ∈R S, P 6≡ 0 ⇒ Pr(P (x1, . . . , xn) = 0) ≤ d
|S| .

While we won’t prove the above claim, it can be shown via induction on n, the number of variables
in the polynomial. We already did the base case (univariate polynomials). This claim tells us that not
all of the elements of Sn can be roots of P .

1.3 Comments

1. The point (x1, . . . xn) must be sampled from the n−dimensional cube Sn (i.e. uniformly). Arbitrary
distributions, even over large support, will not in general work because a multivariate polynomial
can have lots of zeros.

2. This algorithm can be generalized to polynomials over trigonometric and geometric functions.

3. Attempts to de-randomize this algorithm have not yet resulted in a polynomial time algorithm. In
fact, there is a result showing that if there exists a polynomial time (in n, the number of variables,
and d, the degree) algorithm for polynomial identity testing, then either NEXP 6⊂ P/poly, or
Permanent is not computable by polynomial-size arithmetic circuits [1]. Thus, randomness seems
to be a necessary ingredient.

2 Applications of Polynomial Identity Testing

2.1 Man on the moon problem

Being the lazy MIT student you are, you wait until the last moment to hand in your homework, by
which time your professor got bored of waiting and decided to go to the moon. You want to prove to
your professor that your solution (string w) is identical to his solution (string z). Unfortunately, sending
information to the moon is expensive, and you’re an impoverished student. Thus, you would like to find
a way to prove to your professor that you have the right solution (i.e. w = z) by sending fewer than w
bits.

You can view w and z as univariate polynomials Pw and Pz, where the i’th bit of the string is the
coefficient of xi in the polynomial (of degree N + 1, where N is the string length). The professor will
choose a value x ∈R S, where S ⊆ F and |S| ≥ 2N , and request the student to send him Pw(x). If
w 6= z, then Pw(x) 6= Pz(x) with probability at least 1/2. Assuming the field F is chosen reasonably
(e.g. Zp for p only slightly bigger than |S|), this will have communication cost only O(log(N)).

Q: Why not just choose random indices of w to transmit? A: If w and z differ in just 1 bit, then
with O(log(N)) transmissions there’s only a log(N)/N chance of realizing that w 6= z (compared to 1/2
with this algorithm)!

2.2 Bipartite matching

Definition 4. A bipartite graph is a graph G = (V,E) s.t. ∃L,R where L ∪ R = V , s.t. ∀vi, vj ∈
L, (vi, vj) 6∈ E, and ∀vi, vj ∈ R, (vi, vj) 6∈ E. A matching is a subset of the edges M ⊆ E such that no
two edges share a vertex. A perfect matching is a matching where each vertex is incident to some edge.

We want to ask the question, given a bipartite graph G, does a perfect matching exist? This could
be answered deterministically using network flow, but here we give a randomized algorithm, based on
polynomial identity testing. The algorithm begins by defining the Edmonds matrix 1 AG = [aij ], where
aij = Xij if (i, j) ∈ E, and aij = 0 otherwise. Note that this is a matrix of variables, not numbers. The
determinant of this matrix is a polynomial.

Claim 5. G has a perfect matching iff det(AG) 6= 0.

1In class, we called it the Tutte matrix. It would also make sense to call it the Frobenius and Koenig matrix.
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Proof

det(AG) =
∑

σ, all permutations

sign(σ)
n∏

i=1

ai,σ(i) (1)

Each permutation σ corresponds to a possible matching. The product
∏n

i=1 ai,σ(i) will be non-zero iff
∀i = 1 . . . n, each edge (vi, vσ(i)) ∈ E, in which case σ corresponds to a perfect matching in G. The
polynomial det(AG) is non-zero iff any term in the determinant is non-zero; no cancellations can occur
because every term differs in at least one variable.

The determinant det(AG) is a polynomial of degree at most n, where n = |V |. To test if it is
identically zero, just use an appropriately large field and apply the Schwarz algorithm.

Claim 6. det(AG) is a multivariate polynomial on n2 variables with total degree ≤ n and n! terms.

Using the polynomial identity testing algorithm described earlier in lecture, we pick integer random
values for the Xij ’s in the range 1 . . . 2n, and then compute the determinant of the resulting integer ma-
trix. This gives a O(nα) time algorithm, where α is the exponent of the best known matrix multiplication
algorithm (currently 2.376). See [2] for the use of this technique to actually find a matching.

3 Existence of a 2-coloring

In this section we introduce Erdös probabilistic method. The probabilistic method is a technique to prove
the existence of an object by showing that the probability that it exists is greater than zero. We begin
by a simple example, demonstrating how it can be applied to the problem of showing the existence of a
2-coloring in sets.

Given S1, . . . Sm ⊆ S, ∀i|Si| = l, is it possible to color each element of S such that none of the Si

are monochromatic (e.g. all red or all blue)? In general, you can’t know without explicitly checking all
of the colorings. However, we can show that the answer is always “yes” when m < 2l−1.

Theorem 7. If m < 2l−1, there always exists a 2-coloring.

Proof Randomly assign a color (blue or red) to each element of S.

∀i, Pr(Si is monochromatic) = Pr(Si is all blue) + Pr(Si is all red)

=
1
2l

+
1
2l

=
1

2l−1
.

Pr(any Si is monochromatic) ≤
∑

i

Pr(Si is monochromatic)

= m
1
2l

< 1.

Here we made use of the Union-Bound theorem, which says that Pr(A∪B) ≤ Pr(A) + Pr(B) for any two
events A and B. Since the probability that any of the Si is monochromatic is less than 1, the probability
that none of the Si are monochromatic is greater than 0, showing the existence of such a coloring.
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