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Lecture 12

Lecturer: Ronitt Rubinfeld Scribe: Petar Maymounkov

Generating Random Spamming Trees with Markov Chains (Part
I)

This lecture continues the analysis of the algorithm for generating uniform samples from
the set of spanning trees of a graph. The algorithm is defined as follows:

• The state of the Markov chain is a rooted spanning tree (of the input graph G)
with directed edges, such that all edges point toward the root.

• Begin from an arbitrary rooted tree. If the graph did not have self-loops, add them.

• Repeat several times:

– Let the root of the current state’s tree be v. Pick a random edge (v, w)
uniformly at random.

– Add (v, w) to the tree. This creates a cycle.

– Delete the single edge outgoing from w, and set w as the new root.

Fact 1 Two basic properties of this Markov chain are:

1. The chain is ergodic, because:

(a) It is irreducible (left as an exercise)

(b) It is aperiodic (With the self-loops added)

2. The out-degree of each Markov state is equal to the degree of the corresponding tree
node in the input graph, plus 1 to account for the self-loops.

3. The in-degree of each Markov state is equal to its out-degree.

Since the in- and out-degrees of the Markov chain are the same, we have that the
stationary distribution π̃ is such that:

π̃s =
1 + Degree of root at state s

z

here z is a normalizing factor:

z = (2m + 2n) · (# of unrooted spanning trees)

where m stands for the number of edges in the input graph, and n stands for the number
of vertices.
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Next we need to verify that when the stationary distribution is reached, each unrooted
tree is equally likely to be reached:

Pr[output unrooted tree T ] =
∑

v∈V

Pr[reach state (T, v)]

=
∑

v∈V

deg(v) + 1

z

=
2m + 2n

z

=
1

# unrooted trees

Finally, we need to verify that the Markov chain is “rapid mixing”, i.e. that after a
small number of Markov transitions (algorithm steps) starting from an arbitrary state
the resulting distribution approximates the stationary. To show this, we need to take a
digression into “coupling techniques for proving rapid convergence”.

Coupling for Markov Chains

For notation, we are going to use (x, y) ∼ w and (x, y) ∈R w interchangably to mean
that the random variables (x, y) are distributed according to the joint distribution w.

Definition 2 For distributions u on Ω and v on Ω, a distribution w on the (joint) event
space Ω2 is a coupling if:

∀x
∑

y

w(x, y) = u(x)

∀y
∑

x

w(x, y) = v(y)

i.e. the marginal distributions on x and y equal u and v, respectively.

Additionally, to measure the “closeness” of two distributions, we use the following:

Definition 3 The total variation distance between u and v is:

dTV (u, v) =
1

2
||u − v||1

=
1

2

∑

x∈Ω

|u(x) − v(x)|

= max
s⊆Ω

{

u(s) − v(s)
}
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Lemma 4 (Coupling Lemma) For any u and v both on a finite event space Ω, a
coupling w, and (x, y) ∼ w, we have that:

dTV (u, v) ≤ Pr[x 6= y]

Proof For every z ∈ Ω, we have w(z, z) ≤ min{u(z), v(z)}, hence for (x, y) ∼ w:

Pr[x = y] =
∑

z

w(z, z)

≤
∑

z

min{u(z), v(z)}

And therefore:

Pr[x 6= y] ≥ 1 −
∑

z

min{u(z), v(z)}

=
∑

z

(

u(z) − min{u(z), v(z)}
)

=
∑

z
v(z)<u(z)

(

u(z) − v(z)
)

= max
S

{u(s) − v(s)}

= dTV (u, v)

Now consider two random walks of t steps Xt and Yt, starting at states (or distri-
butions over states) a and b respectively, and using the same transition matrix. Also
define the joint distribution of Xt and Yt to be such that when they first meet they stay
together.

More specifically now, consider a coupling (Xt, Yt), where b is chosen according to the
Markov chain’s stationary distribution π̃. The coupling lemma implies that:

dTV (Xt, π̃) ≤ Pr[Xt 6= Yt|X0 = a ∧ Y0 ∼ π̃]

Here we have abused notation by using Xt to also refer to the distribution of the random
variable Xt. This inequality suggests that our goal will be to find an appropriate coupling,
for which the two distributions Xt and Yt = π̃ become close for small values of t. More
formally:

Let T be the expected first coupling time (when the two random processes arrive at
the same state), then:

Theorem 5

dTV (Xt, π̃) ≤
T

t

3



Proof Let τ be the random variable denoting the time when the two random walks
meet for the first time. Then:

dTV (Xt, π̃) ≤ Pr[Xt 6= Yt] by Coupling Lemma

= Pr[τ > t]

≤ T/t by Markov Inequality

Generating Random Spamming Trees with Markov Chains (Part
II)

Now, we define the coupling process for our problem at hand:

1. Run the processes X t and Y t independently until just the tree roots collide

2. Force the roots to move identically hereafter

We have:

E[coupling time] = E[time for roots to collide] + E[time until trees identical|same roots]

The first term (on the right) is left as an exercise. The second term equals the cover
time on the input graph, because once the coupling has walked through all vertices of
the input graph, the two trees are sure to be identical. This is because once the two trees
share a root, a step from root u to root v ensures that edge (u, v) will be in both trees.

Conductance Preliminaries

Let G = (V, E) be given, and let (S, S̄) be a cut, i.e. S ⊆ V , S̄ = V \S. Then we’ll make
a first attempt at defining the “conductance” of the cut as:

φ(S, S̄) =
|ES,S̄|

|ES|

Where:

ES,S̄ = {(u, v)|(u, v) ∈ E ∧ ((u, v) ∈ S × S̄ ∨ (v, u) ∈ S × S̄)}

ES = {(u, v)|(u, v) ∈ E ∧ (u ∈ S ∨ v ∈ S)}

Then the conductance of the graph G might be defined as:

φG = min
S:|S|=|V |/2

φ(S, S̄)

In the next lecture, we’ll look at a more appropriate definition.
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