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Lecture 14
Lecturer: Ronitt Rubinfeld Scribe: Kyle Burke

1 Analysis of the Markov Chain

1.1 Using Congestion and Canonical Paths

How do we see that the transitions of the Markov Chain from lecture 13 has low congestion? We use
a canonical path argument. Consider one edge, from matching M, to M,. Consider some canonical
path, as specified in lecture 13, from matching M; to My that uses this edge. Given the edge (And the
direction we cross it), we only need a small amount of additional information to uniquely identify M;
and M. The amount of information we need limits the number of canonical paths that cross the edge
and thus provides a bound on congestion.

1.2 Identifying a Path

We will need some notation:
Let My @ M be the set of edges in exactly one of My, M.
Let M = (M1 @ M2) \ M,, though this is not necessarily a matching.

Claim 1 We can reconstruct (M, Ms) from (M, Ma,Mb).

e Uncorrected edges in M, match edges in My. (We know what has been corrected, since we know
the lezicographical ordering.)

o Corrected edges in M, ® M reveal the other edges of M;.

o We can determine Mo similarly from Mp.

1.3 M is Almost a Matching

We will sidestep the issue of the number of bits needed to specify M by bounding the congestion in
terms of n; the size of the Markov Chain. We notice that although M is not a matching, it can be
transformed into a matching by removing at most 2 edges, due to the structure of the fixing procedure
definted earlier.

With the 2 edges e; and e such that M \ {e, ez} is a matching, we can specify (M, M,, Mb) with
(M\ {61, 62}, €1, €2, ]\4@7 Mb)

1.4 Putting All the Pieces Together

Now, the matching M\ {e1, ez} can correspond to any state of the Markov Chain, while the edges could be
any edges. Thus, any transition from M, to Mj;, has congestion at most (# states in Markov Chain)-m?.
We saw, from our previous analysis of the Canonical Path Technique, that if we have congestion of
(# states in Markov Chain) - « in a d-regular graph, then the conductance, ¢ is > ﬁ. Thus, the
conductance here is at least %

1.5 Determining the Mixing Time

Again from the previous lecture, in order to mix we will need a number of steps equal to
t= ﬁ In (% - (# matchings))
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1.6 Conclusions for the Markov Chain

Thus we need only a number of steps polynomial in the size of the graph and the reciprocal of the error
(although this is a large polynomial). The Markov Chain we defined in the last class will mix rapidly
enough to provide near-uniform generation.

2 Relating Linear Algebra to Mixing

2.1 Graphs and Linear Algebra

Given an undirected, d-regular graph G, let P be the transition matrix of G. P is both real and
symmetric. Recalling our Linear Algebra, we say that v is an eigenvector of P with eigenvalue X if
vP = Av.

Theorem 2 If P is real and symmetric, then 3 an orthonormal basis vV, ... v(™ of eigenvectors of P
with associated eigenvalues A1,..., An,. We will label these so that |\;| > |Nit1].
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Example: The transition matrix, P, of a random walk on a d-regular graph has eigenvector (%, %, s

with eigenvalue 1.
Next time: We will review more Linear Algebra and look at relating eigenvalues of P with the mixing

time of G.



