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1 Analysis of the Markov Chain

1.1 Using Congestion and Canonical Paths

How do we see that the transitions of the Markov Chain from lecture 13 has low congestion? We use
a canonical path argument. Consider one edge, from matching Ma to Mb. Consider some canonical
path, as specified in lecture 13, from matching M1 to M2 that uses this edge. Given the edge (And the
direction we cross it), we only need a small amount of additional information to uniquely identify M1

and M2. The amount of information we need limits the number of canonical paths that cross the edge
and thus provides a bound on congestion.

1.2 Identifying a Path

We will need some notation:
Let M1 ⊕ M2 be the set of edges in exactly one of M1, M2.
Let M = (M1 ⊕ M2) \ Ma, though this is not necessarily a matching.

Claim 1 We can reconstruct (M1, M2) from
(

M, Ma, Mb

)

.

• Uncorrected edges in Ma match edges in M1. (We know what has been corrected, since we know
the lexicographical ordering.)

• Corrected edges in Ma ⊕ M reveal the other edges of M1.

• We can determine M2 similarly from MB.

1.3 M is Almost a Matching

We will sidestep the issue of the number of bits needed to specify M by bounding the congestion in
terms of n; the size of the Markov Chain. We notice that although M is not a matching, it can be
transformed into a matching by removing at most 2 edges, due to the structure of the fixing procedure
definted earlier.

With the 2 edges e1 and e2 such that M \ {e1, e2} is a matching, we can specify
(

M, Ma, Mb

)

with
(

M \ {e1, e2}, e1, e2, Ma, Mb

)

.

1.4 Putting All the Pieces Together

Now, the matching M\{e1, e2} can correspond to any state of the Markov Chain, while the edges could be
any edges. Thus, any transition from Ma to Mb has congestion at most (# states in Markov Chain) ·m2.
We saw, from our previous analysis of the Canonical Path Technique, that if we have congestion of
(# states in Markov Chain) · α in a d-regular graph, then the conductance, ΦG is ≥ 1

d·α
. Thus, the

conductance here is at least 1
m3 .

1.5 Determining the Mixing Time

Again from the previous lecture, in order to mix we will need a number of steps equal to
t = 4

( 1

m
3 )2 ln

(

2
ǫ2

· (# matchings)
)

= 4m6 ln
(

2
ǫ2

· (# matchings)
)

1



≤ 4m6 ln
(

2
ǫ2

· 2m
)

≤ O
(

m7 ln
(

1
ǫ2

))

1.6 Conclusions for the Markov Chain

Thus we need only a number of steps polynomial in the size of the graph and the reciprocal of the error
(although this is a large polynomial). The Markov Chain we defined in the last class will mix rapidly
enough to provide near-uniform generation.

2 Relating Linear Algebra to Mixing

2.1 Graphs and Linear Algebra

Given an undirected, d-regular graph G, let P be the transition matrix of G. P is both real and
symmetric. Recalling our Linear Algebra, we say that v is an eigenvector of P with eigenvalue λ if
vP = λv.

Theorem 2 If P is real and symmetric, then ∃ an orthonormal basis v(1), . . . , v(n) of eigenvectors of P

with associated eigenvalues λ1, . . . , λn. We will label these so that |λi| ≥ |λi+1|.

Example: The transition matrix, P , of a random walk on a d-regular graph has eigenvector
(

1
n
, 1

n
, · · · , 1

n

)

with eigenvalue 1.
Next time: We will review more Linear Algebra and look at relating eigenvalues of P with the mixing

time of G.
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