1 Reducing the randomness of repeated runs

Assume we have a randomized algorithm A using an r bit random string R that approximates a function f with error $\frac{1}{100}$, namely, $\Pr_{R}[A(x, R) \neq f(x)] \leq \frac{1}{100}$. To improve the error bound, we run A repeatedly and take the majority output. However, if we were to do this naively, then running A k times would take rk random bits; here we show how to accomplish this using only $r + O(k)$ random bits.

The construction involves the following: we consider a graph G on 2^r nodes of a special form; we wish to simulate drawing k random vertices from the graph using less than rk bits of randomness; we accomplish this via a random walk on G.

Specifically, let G have the following properties:

- G is d-regular for some fixed d, i.e., every vertex of G has degree d.
- Let P be the transition matrix for a random walk of G; we require P be symmetric, and that λ_2, the second largest eigenvalue of P, have magnitude at most $\frac{1}{10}$.

We define the following algorithm:

1. Pick a random start node $R \in \{0, 1\}^r$.

2. Repeat the following $7k$ times:

 (a) Let R be a random neighbor of the old R

 (b) Run $A(x)$ with R as the random bits

3. Output the majority answer

We note that each of the $7k$ iterations requires choosing one of the d neighbors of the old R, and thus requires $\log d$ bits of randomness. Thus the above algorithm requires $r + 7k \log d = r + O(k)$ random bits, since we take d to be a constant. We note that this is significantly less than the $O(rk)$ bits of randomness required by the naive algorithm.

We prove the following:

Theorem 1 Under the above assumptions, the above algorithm will output $f(x)$ with error at most 2^{-k}.

To help our analysis of the above theorem, we define the set B, the “bad guys” as follows for some fixed x:

$$B = \{ R | A_R(x) \text{ is incorrect} \},$$

namely the set of R for which $A_R(x) \neq f(x)$. We note that by definition of A, $|B| < 2^r/100$.

We next define two diagonal matrices N, M of size $2^r \times 2^r$. Let N have a 1 on the diagonal entry (R, R) for each string $R \in B$, and zeros everywhere else. Let M have a 1 on the diagonal entry (R, R) for each string $R \notin B$, i.e., $M = I - N$.

For a vector v let $|v|$ denote the L_1 norm of v, namely $\sum_i |v_i|$, and let $||v||$ denote the L_2 norm of v, namely $\sqrt{\sum_i v_i^2}$.

Consider the following constructions. Let p be a probability distribution on the strings of length r. Then

$$|pN| = \Pr_{R \sim p} [R \text{ is bad}].$$
Similarly we have

\[|pPN| = Pr_{R \leftarrow p} [\text{start at } p, \text{ take one step according to } P, \text{ and end up in a bad } R], \]

and

\[|pPNPN| = Pr_{R \leftarrow p} [\text{start at } p, \text{ take two steps according to } P, \text{ and end up in two bad nodes}]. \]

In general, given a "correctness path" \(S \), namely a sequence of "correct" or "incorrect" of length \(7k \), if we let

\[Q_i = \begin{cases} M & \text{if } S_i = \text{"correct"} \\ N & \text{if } S_i = \text{"incorrect"} \end{cases} \]

then the probability that our path through the graph will follow the "correctness path" \(S \) is

\[Pr[S] = |p(PQ_1)(PQ_2) \cdot \ldots \cdot (PQ_{7k})|. \]

We state a lemma that will let us prove our theorem; we prove the lemma later.

Lemma 2 For all distributions \(\Pi, \) and \(P, N, M \) as above

1. \(||\Pi P M|| \leq ||\Pi|| \)
2. \(||\Pi P N|| \leq \frac{5}{2}||\Pi|| \)

We now prove the main theorem.

Proof of Theorem 1 Consider an execution of the above algorithm. If fewer than \(\frac{7k}{2} \) of the runs of \(A \) have randomness \(R \in B \) then a majority of the runs will output \(f(x) \) and the algorithm will output \(f(x) \) correctly. We bound the probability that this does not occur.

Consider a correctness path \(S \) which contains more than \(\frac{7k}{2} \) "incorrect"s. From above we have that

\[Pr[S] = |p(PQ_1)(PQ_2) \cdot \ldots \cdot (PQ_{7k})|. \]

We have from the Cauchy-Schwarz inequality that for any vector \(v \) of length \(2^r \)

\[|v| = v \cdot (1, 1, ..., 1) \leq ||v|| \cdot ||(1, 1, ..., 1)|| = \sqrt{2^r}||v||. \]

Thus we have

\[Pr[S] \leq \sqrt{2^r}||p(PQ_1)(PQ_2) \cdot \ldots \cdot (PQ_{7k})||. \]

At this point, we invoke Lemma 2 \(7k \) times to successively remove the terms \((PQ_i) \) from the above expression. We note that at least \(\frac{7k}{2} \) times we can invoke case two of the lemma. We thus have the bound

\[Pr[S] \leq \sqrt{2^r}||p|| \left(\frac{1}{5} \right)^{7k/2}. \]

We note that the algorithm specified that the initial \(R \) be drawn randomly, and hence \(p \) is uniform. By explicit computation we may check that in this case

\[||p|| = \sqrt{\sum_{i=1}^{2^r} (2^{-r})^2} = \sqrt{2^{-r}}. \]

Thus \(Pr[S] \leq 5^{-7k/2}. \) We apply the union bound to bound the total probability of such a sequence \(S \) fooling the algorithm. The total number of sequences \(S \) is \(2^{7k} \), and this thus bounds the number of
sequences with at least \(\frac{7k}{2} \) “incorrect” s in them. Thus the total probability of the algorithm giving the wrong answer is at most
\[
5^{-7k/2}2^{7k} = \left(\frac{4}{5} \right)^{7k/2} \leq 2^{-k},
\]
and we have the desired result. \(\blacksquare \)

We now prove the lemma.

Proof of Lemma 2

We note that the first part of the lemma, that \(||P M P|| \leq ||P|| \) for any distribution \(P \) is trivially true since both \(P \) and \(M \) have all their eigenvalues at most 1. We write this out in greater detail.

For any vector \(x \),
\[
||x M|| = \sqrt{\sum_{i \in B} x_i^2} \leq \sqrt{\sum_i x_i^2} = ||x||.
\]
Thus \(||P M P|| \leq ||P|| \).

Consider the eigenvalues \(\{\lambda_i\} \) and eigenvectors \(\{v_i\} \) of matrix \(P \). Since \(P \) is stochastic, it has an eigenvalue \(\lambda_1 = 1 \) with corresponding eigenvector of \(v_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, ..., \frac{1}{\sqrt{2}}) \).

Recall that for a symmetric matrix, the eigenvectors form an orthonormal basis. Thus for any \(\Pi \) we can express it as
\[
\Pi = \sum \alpha_i v_i,
\]
for some \(\{\alpha_i\} \).

Thus we have
\[
||\Pi P|| = ||\sum \alpha_i v_i P|| = ||\sum \alpha_i \lambda_i v_i||,
\]
where the last equality is by from the definition of eigenvectors. Since the eigenvectors are orthonormal, we express this norm as
\[
||\sum \alpha_i \lambda_i v_i|| = \sqrt{\sum \alpha_i^2 \lambda_i^2} \leq \sqrt{\sum \alpha_i^2},
\]
where this last inequality is because \(\lambda_i \leq 1 \) by assumption. Recall that we defined \(\{\alpha_i\} \) by \(\Pi = \sum \alpha_i v_i \), so since \(\{v_i\} \) is an orthonormal basis we have
\[
\sqrt{\sum \alpha_i^2} = ||\Pi||,
\]
from which we conclude that \(||P M P|| \leq ||\Pi|| \), as desired.

We now turn to the second part of the lemma, that \(||P P N|| \leq \frac{4}{5}||\Pi|| \). Similar to the above analysis, we have
\[
||P P N|| = ||\sum \alpha_i v_i P N|| = ||\sum \alpha_i \lambda_i v_i N|| \leq ||\alpha_1 \lambda_1 v_1 N|| + ||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i N||,
\]
where the last inequality is by the triangle inequality. We bound each of these terms separately.

Consider the first term, \(||\alpha_1 \lambda_1 v_1 N|| \). Since \(||\{\alpha_i\}|| = ||\Pi|| \) we have \(\alpha_1 \leq ||\Pi|| \). From above we have that \(\lambda_1 = 1 \) and \(v_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, ..., \frac{1}{\sqrt{2}}) \). Since \(N \) has a one on its diagonal for each \(R \in B \) we have
\[
||\alpha_1 \lambda_1 v_1 N|| \leq ||\Pi|| \cdot ||v_1 N|| = ||\Pi|| \cdot \sqrt{\sum_{i \in B} 2^{-r} \leq ||\Pi|| \sqrt{\frac{1}{100}} = \frac{||\Pi||}{10}.}
\]

We now bound the second term: \(||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i N|| \). Since \(N \) is a diagonal matrix, each of whose entries is at most 1, we have \(||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i N|| \leq ||\sum_{i=2}^{2^r} \alpha_i \lambda_i v_i|| \). Since the vectors \(\{v_i\} \) form an orthonormal
basis, we have \(||\sum_{i=2}^{2r} \alpha_i \lambda_i v_i|| = \sqrt{\sum_{i=2}^{2r} \alpha_i^2 \lambda_i^2} \). Since by hypothesis all the eigenvalues of \(P \) except the first have magnitude at most \(\frac{1}{10} \), we have

\[
\sqrt{\sum_{i=2}^{2r} \alpha_i^2 \lambda_i^2} \leq \frac{1}{10} \sqrt{\sum_{i=2}^{2r} \alpha_i^2} \leq \frac{||\Pi||}{10},
\]

our desired bound.

Summing these two bounds, we conclude \(||\Pi PN|| \leq \frac{||\Pi||}{5} \), as desired.

2 Derandomizing

We have just seen a technique for reducing the randomness needed for an algorithm. We ask now: what techniques might completely eliminate randomness from an algorithm?

The most basic such technique is the enumeration technique, which is just:

1. Given an algorithm \(A \) that uses \(r \) uniformly chosen random bits and succeeds with probability more than \(\frac{1}{2} \),
2. Run \(A \) \(2^r \) times for every possible \(r \)-bit string \(R \).
3. Output the majority answer

Clearly the resulting algorithm uses no randomness, and outputs the correct answer. However, its running time is \(2^r \) times longer than \(A \), which might be prohibitive.

We sketch an alternative that is applicable when \(A \) uses its random bits in a very particular way.

Recall:

Definition 3 (Independent) \(R_1, R_2, \ldots, R_n \in T \) are independent if for all \(b_1, b_2, \ldots, b_n \in T^n \),

\[
\Pr[R_1R_2\ldots R_n = b_1b_2\ldots b_n] = |T|^{-n}.
\]

Values chosen uniformly at random are independent.

Often, this is more than we need, and pairwise independence is sufficient.

Definition 4 (Pairwise independent) \(R_1, R_2, \ldots, R_n \in T \) are pairwise independent if for all \(i \neq j \in [1, n] \), for all \(b_i, b_j \in T^2 \),

\[
\Pr[R_iR_j = b_i b_j] = |T|^{-2}.
\]

Intuitively this means that any pair of bits of \(R_i, R_j, i \neq j \) will appear uniformly random. This notion may be extended to larger subsets of variables.

Definition 5 (k-wise independent) \(R_1, R_2, \ldots, R_n \in T \) are k-wise independent if for all \(i_1 < i_2 < \ldots < i_k \in [1, n] \) and \(b_{i_1}, b_{i_2}, \ldots, b_{i_k} \in T^n \),

\[
\Pr[R_{i_1}R_{i_2}\ldots R_{i_k} = b_{i_1}b_{i_2}\ldots b_{i_k}] = |T|^{-k}.
\]

As an example of a pairwise random distribution of 3-bit strings, consider the uniform distribution over the strings \(\{000, 011, 101, 110\} \), and note that for any pair of bits, all four possibilities appear exactly once. Also note that the 3rd bit is the exclusive-or of the first two.

Suppose we have an algorithm \(A \) that uses \(r \) random bits, but only requires pairwise independence, instead of full independence. Further, suppose we have a generator \(G \) that, when given \(m \ll r \) fully random bits outputs \(r \) pairwise random bits. Then we have the following procedure:

For each of the \(m \)-bit strings \(M \), run the generator on \(M \) and let \(R = G(M) \). Then run \(A \) with \(R \) as the random bits. Output the majority answer that these runs of \(A \) return.
We note that since A only requires pairwise independent bits, the above procedure – a trivial modification of the enumeration technique above – will output the correct answer, and require time only 2^m more than the time taken by A and G.

This approach relies on two facts which we will see in later lectures:

- A variety of algorithms do not in fact require “complete” independence, and only require pairwise independence, or other weaker notions of independence.

- There exist very efficient generators for producing pairwise, 3-wise, etc. independent strings from much shorter (polylogarithmic) fully independent strings.