
6.895 Randomness and Computation April 10, 2006

Lecture 16

Lecturer: Ronitt Rubinfeld Scribe: Paul Valiant

1 Reducing the randomness of repeated runs

Assume we have a randomized algorithm A using an r bit random string R that approximates a function
f with error 1

100
, namely, PrR[A(x, R) 6= f(x)] ≤ 1

100
. To improve the error bound, we run A repeatedly

and take the majority output. However, if we were to do this naively, then running A k times would
take rk random bits; here we show how to accomplish this using only r + O(k) random bits.

The construction involves the following: we consider a graph G on 2r nodes of a special form; we
wish to simulate drawing k random vertices from the graph using less than rk bits of randomness; we
accomplish this via a random walk on G.

Specifically, let G have the following properties:

• G is d-regular for some fixed d, i.e., every vertex of G has degree d.

• Let P be the transition matrix for a random walk of G; we require P be symmetric, and that λ2,
the second largest eigenvalue of P , have magnitude at most 1

10
.

We define the following algorithm:

1. Pick a random start node R ∈ {0, 1}r.

2. Repeat the following 7k times:

(a) Let R be a random neighbor of the old R

(b) Run A(x) with R as the random bits

3. Output the majority answer

We note that each of the 7k iterations requires choosing one of the d neighbors of the old R, and thus
requires log d bits of randomness. Thus the above algorithm requires r + 7k log d = r + O(k) random
bits, since we take d to be a constant. We note that this is significantly less than the O(rk) bits of
randomness required by the naive algorithm.

We prove the following:

Theorem 1 Under the above assumptions, the above algorithm will output f(x) with error at most 2−k.

To help our analysis of the above theorem, we define the set B, the “bad guys” as follows for some
fixed x:

B = {R|AR(x) is incorrect},
namely the set of R for which AR(x) 6= f(x). We note that by definition of A, |B| < 2r/100.

We next define two diagonal matrices N, M of size 2r × 2r. Let N have a 1 on the diagonal entry
(R, R) for each string R ∈ B, and zeros everywhere else. Let M have a 1 on the diagonal entry (R, R)
for each string R /∈ B, i.e., M = I − N .

For a vector v let |v| denote the L1 norm of v, namely
∑

i |vi|, and let ||v|| denote the L2 norm of v,

namely
√

∑

i v2

i .
Consider the following constructions. Let p be a probability distribution on the strings of length r.

Then
|pN | = Pr

R←p
[R is bad].

1

Similarly we have

|pPN | = Pr
R←p

[start at p, take one step according to P , and end up in a bad R],

and

|pPNPN | = Pr
R←p

[start at p, take two steps according to P , and end up in two bad nodes].

In general, given a “correctness path” S, namely a sequence of “correct” or “incorrect” of length 7k,
if we let

Qi =

{

M if Si = “correct”
N if Si = “incorrect”

then the probability that our path through the graph will follow the “correctness path” S is

Pr[S] = |p(PQ1)(PQ2) · ... · (PQ7k)|.

We state a lemma that will let us prove our theorem; we prove the lemma later.

Lemma 2 For all distributions Π, and P, N, M as above

1. ||ΠPM || ≤ ||Π||

2. ||ΠPN || ≤ 1

5
||Π||

We now prove the main theorem.
Proof of Theorem 1 Consider an execution of the above algorithm. If fewer than 7k

2
of the runs of

A have randomness R ∈ B then a majority of the runs will output f(x) and the algorithm will output
f(x) correctly. We bound the probability that this does not occur.

Consider a correctness path S which contains more than 7k
2

“incorrect”s. From above we have that

Pr[S] = |p(PQ1)(PQ2) · ... · (PQ7k)|.

We have from the Cauchy-Schwarz inequality that for any vector v of length 2r

|v| = v · (1, 1, ..., 1) ≤ ||v|| · ||(1, 1, ..., 1)|| =
√

2r||v||.

Thus we have
Pr[S] ≤

√
2r||p(PQ1)(PQ2) · ... · (PQ7k)||.

At this point, we invoke Lemma 2 7k times to successively remove the terms (PQi) from the above
expression. We note that at least 7k

2
times we can invoke case two of the lemma. We thus have the

bound

Pr[S] ≤
√

2r||p||
(

1

5

)7k/2

.

We note that the algorithm specified that the initial R be drawn randomly, and hence p is uniform. By
explicit computation we may check that in this case

||p|| =

√

√

√

√

2r

∑

i=1

(2−r)2 =
√

2−r.

Thus Pr[S] ≤ 5−7k/2. We apply the union bound to bound the total probability of such a sequence
S fooling the algorithm. The total number of sequences S is 27k, and this thus bounds the number of

2

sequences with at least 7k
2

“incorrect”s in them. Thus the total probability of the algorithm giving the
wrong answer is at most

5−7k/227k =

(

4

5

)7k/2

≤ 2−k,

and we have the desired result.

We now prove the lemma.
Proof of Lemma 2

We note that the first part of the lemma, that ||ΠPM || ≤ ||Π|| for any distribution Π is trivially true
since both P and M have all their eigenvalues at most 1. We write this out in greater detail.

For any vector x,

||xM || =

√

∑

i/∈B

x2

i ≤
√

∑

i

x2

i = ||x||.

Thus ||ΠPM || ≤ ||ΠP ||.
Consider the eigenvalues {λi} and eigenvectors {vi} of matrix P . Since P is stochastic, it has an

eigenvalue λ1 = 1 with corresponding eigenvector of v1 = (1√
2r

, 1√
2r

, ..., 1√
2r

).

Recall that for a symmetric matrix, the eigenvectors form an orthonormal basis. Thus for any Π we
can express it as

Π =
∑

αivi,

for some {αi}.
Thus we have

||ΠP || = ||
∑

αiviP || = ||
∑

αiλivi||,

where the last equality is by from the definition of eigenvectors. Since the eigenvectors are orthonormal,
we express this norm as

||
∑

αiλivi|| =
√

∑

α2

i λ
2

i ≤
√

∑

α2

i ,

where this last inequality is because λi ≤ 1 by assumption. Recall that we defined {αi} by Π =
∑

αivi,
so since {vi} is an orthonormal basis we have

√

∑

α2

i = ||Π||,

from which we conclude that ||ΠPM || ≤ ||Π||, as desired.
We now turn to the second part of the lemma, that ||ΠPN || ≤ 1

5
||Π||. Similar to the above analysis,

we have

||ΠPN || = ||
∑

αiviPN || = ||
∑

αiλiviN || ≤ ||α1λ1v1N || + ||
2

r

∑

i=2

αiλiviN ||,

where the last inequality is by the triangle inequality. We bound each of these terms separately.
Consider the first term, ||α1λ1v1N ||. Since ||{αi}|| = ||Π|| we have α1 ≤ ||Π||. From above we have

that λ1 = 1 and v1 = (1√
2r

, 1√
2r

, ..., 1√
2r

). Since N has a one on its diagonal for each R ∈ B we have

||α1λ1v1N || ≤ ||Π|| · ||v1N || = ||Π||
√

∑

i∈B

2−r ≤ ||Π||
√

1

100
=

||Π||
10

.

We now bound the second term: ||
∑

2
r

i=2
αiλiviN ||. Since N is a diagonal matrix, each of whose entries

is at most 1, we have ||
∑

2
r

i=2
αiλiviN || ≤ ||

∑

2
r

i=2
αiλivi||. Since the vectors {vi} form an orthonormal

3

basis, we have ||∑2
r

i=2
αiλivi|| =

√

∑2r

i=2
α2

i λ
2

i . Since by hypothesis all the eigenvalues of P except the

first have magnitude at most 1

10
, we have

√

√

√

√

2r

∑

i=2

α2

i λ
2

i ≤ 1

10

√

√

√

√

2r

∑

i=2

α2

i ≤ ||Π||
10

,

our desired bound.
Summing these two bounds, we conclude ||ΠPN || ≤ ||Π||

5
, as desired.

2 Derandomizing

We have just seen a technique for reducing the randomness needed for an algorithm. We ask now: what
techniques might completely eliminate randomness from an algorithm?

The most basic such technique is the enumeration technique, which is just:

1. Given an algorithm A that uses r uniformly chosen random bits and succeeds with probability
more than 1

2
,

2. Run A 2r times for every possible r-bit string R.

3. Output the majority answer

Clearly the resulting algorithm uses no randomness, and outputs the correct answer. However, its
running time is 2r times longer than A, which might be prohibitive.

We sketch an alternative that is applicable when A uses its random bits in a very particular way.
Recall:

Definition 3 (Independent) R1, R2, . . . , Rn ∈ T are independent if for all b1, b2, . . . bn ∈ T n,

Pr[R1R2 . . . Rn = b1b2 . . . bn] = |T |−n. Values chosen uniformly at random are independent.

Often, this is more than we need, and pairwise independence is sufficient.

Definition 4 (Pairwise independent) R1, R2, . . . , Rn ∈ T are pairwise independent if for all i 6=
j ∈ [1, n], for all bi, bj ∈ T 2, Pr[RiRj = bibj] = |T |−2.

Intuitively this means that any pair of bits of Ri, Rj , i 6= j will appear uniformly random. This
notion may be extended to larger subsets of variables.

Definition 5 (k-wise independent) R1, R2, . . . , Rn ∈ T are k-wise independent if for all i1 <
i2 < . . . ik ∈ [1, n] and bi1 , bi2 , . . . bik

∈ T n, Pr[Ri1Ri2 . . . Rik
= bi1bi2 . . . bik

] = |T |−k.

As an example of a pairwise random distribution of 3-bit strings, consider the uniform distribution
over the strings {000, 011, 101, 110}, and note that for any pair of bits, all four possibilities appear exactly
once. Also note that the 3rd bit is the exclusive-or of the first two.

Suppose we have an algorithm A that uses r random bits, but only requires pairwise independence,
instead of full independence. Further, suppose we have a generator G that, when given m ≪ r fully
random bits outputs r pairwise random bits. Then we have the following procedure:

For each of the m-bit strings M , run the generator on M and let R = G(M). Then run A
with R as the random bits. Output the majority answer that these runs of A return.

4

We note that since A only requires pairwise independent bits, the above procedure – a trivial modi-
fication of the enumeration technique above – will output the correct answer, and require time only 2m

more than the time taken by A and G.
This approach relies on two facts which we will see in later lectures:

• A variety of algorithms do not in fact require “complete” independence, and only require pairwise
independence, or other weaker notions of independence.

• There exist very efficient generators for producing pairwise, 3-wise, etc. independent strings from
much shorter (polylogarithmic) fully independent strings.

5

