
6.895 Randomness and Computation February 22, 2006

Lecture 5
Lecturer: Ronitt Rubinfeld Scribe: Josh Grochow

Recall from last time, f is a Boolean function on Boolean strings, and we are attempting to find a
linear function that approximates f by looking for large Fourier coefficients of f̂ , the Fourier transform
of f . Throughout these notes, a “function” will always be a Boolean function on Boolean strings, unless
otherwise specified.

f : {±1}n → {±1} f̂(S) = 〈f, χS〉 = 1
2n

∑
x∈{±1}n f(x)χS(x)

f(x) =
∑

z∈{±1}n f̂(z)χz(x) Parseval’s:
∑

S f̂(S)2 = 1 (for Boolean f)

Definition 1 A function g : {±1}n → R is said to ε-approximate f in the L2 norm if Ex[(f(x) −
g(x))2] ≤ ε.

Claim 2 Pr[f(x) 6= sign(g(x))]︸ ︷︷ ︸
prediction error of sign(g(x))

≤ Ex[(f(x)− g(x))2]

We proved this claim last time.
Suppose we are given query access to such a function f , and provided with a parameter θ. Today’s

goal is to examine an algorithm (the Goldreich-Levin algorithm) that will output all Fourier coefficients
γ such that |f̂(γ)| ≥ θ, and no coefficients γ with |f̂(γ)| < θ/2. (Coefficients whose magnitudes are
between θ/2 and θ may or may not be output.)

Before doing this, we will show that it is okay to ignore the small Fourier coefficients (i.e. those
for which |f̂(γ)| < θ/2). The following lemma shows that if there is some function g which has few
nonzero Fourier coefficients and ε-approximates f , then we can construct a function h which almost
ε-approximates f and moreover has only large Fourier coefficients.

In fact, the Fourier coefficients output by the Goldreich-Levin algorithm will be exactly the Fourier
coefficients of the h constructed in this lemma.

Lemma 3 Given f : {±1}n → {±1}, suppose there exists g such that

(G1) g is t-sparse (has no more than t nonzero Fourier coefficients)

(G2) g ε-approximates f (i.e. Ex[(f(x)− g(x))2] ≤ ε).

Let T be the support of ĝ (the set of nonzero Fourier coefficients of g). Then

h(x) =
∑

z∈T :f̂(z)>ε/t

f̂(z)χz(x)

has the following properties:

(H1) h is t-sparse

(H2) Ex[(f(x)− h(x))2] ≤ ε + O(ε2)

(H3) All nonzero coefficients of h are > ε/t.

Proof (H1) and (H3) are satisfied by construction. Since we defined h in terms of its Fourier repre-
sentation, and the only nonzero coefficients of ĥ are a subset of T , it is clear that h is t-sparse. Property
(H3) is satisfied because h is constructed from only those coefficients which were greater than ε/t.

Since Ex[(f(x)− g(x))2] ≤ ε, by assumption (G2), we need only show that

Ex[(f(x)− h(x))2]− Ex[(f(x)− g(x))2] ≤ O(ε2).

1

To show this, we will take advantage of some basic properties of the Fourier transform (the map
which sends a function k to k̂). First, for any function k, we have E[k2] = 〈k, k〉 which is the same as∑

k̂2, by Parseval’s relation. Next, while we have not shown this in class, it is nonetheless the case that
the Fourier transform is a linear operation: ̂(f − g)(z) = f̂(z)− ĝ(z). So we have:

Ex[(f(x)− g(x))2] =
∑

z
̂(f − g)

2
(by Parseval’s relation)

=
∑

z(f̂(z)− ĝ(z))2 (by linearity)
=

∑
z∈T (f̂(z)− ĝ(z))2 +

∑
z/∈T (f̂(z)− ĝ(z))2

=
∑

z∈T (f̂(z)− ĝ(z))2 +
∑

z/∈T f̂(z)2 (ĝ(z) = 0 for z /∈ T)

Where the last step follows because T is defined as the support of ĝ. Next, examine Ex[(f(x)− h(x))2]:

Ex[(f(x)− h(x))2] =
∑

z(f̂(z)− ĥ(z))2 (by Parseval’s and linearity)
=

∑
z∈T (f̂(z)− ĥ(z))2 +

∑
z/∈T (f̂(z)− ĥ(z))2

=
∑

z∈T (f̂(z)− ĥ(z))2 +
∑

z/∈T f̂(z)2 (ĥ(z) = 0 for z /∈ T)
=

∑
z∈T∧f̂(z)≤ε/t(f̂(z)− ĥ(z))2 +

∑
z/∈T f̂(z)2 (ĥ(z) = f̂(z) for z ∈ T ∧ f̂(z) > ε/t)

Finally, subtracting the two expectations from one another, we get:

Ex[(f(x)− h(x))2]− Ex[(f(x)− g(x))2] =

 ∑
z∈T∧f̂(z)≤ε/t

f̂(z)2 +
∑
z/∈T

f̂(z)2

−

(∑
z∈T

(f̂(z)− ĝ(z))2 +
∑
z/∈T

f̂(z)2
)

=
∑

z∈T∧f̂(z)≤ε/t

f̂(z)2 −
∑
z∈T

(f̂(z)− ĝ(z))2

≤
∑

z∈T∧f̂(z)≤ε/t

f̂(z)2 (since (f̂ − ĝ)2 ≥ 0)

≤ t(ε/t)2 = ε2/t = O(ε2)

Now that we have shown that it is okay to approximate f by a function with only large Fourier
coefficients, we must display an algorithm to actually find those coefficients. We begin by defining, for
each partial Fourier coefficient α ∈ {±1}k, the function induced by choosing only Fourier coefficients
that begin with α:

fα(x) =
∑

β∈{±1}n−k

f̂(αβ)χβ(x)

One consequence of this definition is that for any fixed k, f(x) =
∑

α∈{±1}k fα(x). Note that when

|α| = n, we have fα(x) = f̂(α), and when |α| = 0, we have fα = f∅ = f .
The Goldreich-Levin algorithm, which we will denote by coef(α), is essentially a smart search for

large Fourier coefficients (a binary search with efficient pruning of the search tree). To find the Fourier
coefficients of f which are greater than θ, we simply call coef(∅). For the remainder of these notes, by
large Fourier coefficients, we shall mean γ such that |f̂(γ)| ≥ θ, and by small we shall mean |f̂(γ)| ≤ θ/2.

coef(α) begins by checking if fα has any large Fourier coefficients at all (we’ll see how the test is
done shortly). If it does, then we partition the coefficients of fα into fα(+1) and fα(−1) and recurse
(where α(+1) denotes concatenating +1 to α).

Algorithm coef(α)
if E[f2

α] ≥ θ2/2 then
if |α| = n output α
else output the union of coef(α(+1)), coef(α(−1))

2

For the moment, assume we can compute E[f2
α] efficiently: we will see how to approximate this value

at the end of the lecture. It now remains to show both that this algorithm is correct, and that it is
efficient (probabilistic polynomial time).

The following lemma will bound the size of the search tree to be polynomial in 1/θ. Then, since
we can approximate E[f2

α] in polynomial time, this lemma shows that the entire algorithm runs in
polynomial time.

Lemma 4 1. Fewer than 1/θ2 z’s satisfy |f̂(z)|2 ≥ θ.

2. For all 1 ≤ k ≤ n, fewer than 1/θ2 fα’s satisfy E[f2
α] ≥ θ2.

Proof

1. Suppose more than 1/θ2 z’s satisfy |f̂(z)| ≥ θ. Then for each of these, |f̂(z)|2 ≥ θ2, so the sum of
their squared magnitudes is greater than one. But this contradicts Parseval’s theorem, which says
that this sum should be exactly equal to one.

2. Ex[f2
α(x)] =

∑
β∈{±1}n−k f̂2(αβ). If we then sum over all α ∈ {±1}k, we get

∑
αβ∈{±1}n f̂2(z),

which is equal to one by Parseval’s theorem. The same argument as above completes the proof.

Note that part (1) of the above lemma bounds the number of leaves that the Goldreich-Levin algo-
rithm will explore, while part (2) bounds the number of visited nodes.

It turns out that these bounds are tight. Consider the function f(x1, . . . , xn) = maj(x1, . . . , xk) for
some k < n, where maj denotes the majority function. For all S ⊆ [n] such that S ∩ {k + 1, . . . , n} 6= ∅,
f̂(S) = 0, i.e. any Fourier coefficient related to the xi for i > k will be zero. The remaining Fourier
coefficients will then be approximately 1/

√
2k, which must be approximately θ.

Next, we prove the correctness of the algorithm.

Lemma 5 The Goldreich-Levin algorithm, as presented above, outputs all Fourier coefficients γ such
that |f(γ)| ≥ θ, and no Fourier coefficients such that |f(γ)| < θ/2.

Proof Recall from part 2 of the above lemma that Ex[f2
α] =

∑
β f̂2(αβ). Since f̂2 is positive for any

argument, then if there is any β such that |f̂(αβ)| ≥ θ, then Ex[f2
α] ≥ θ2. So the algorithm explores all

branches that have large Fourier coefficients, and when |α| = n, outputs those coefficients.
Next, if every Fourier coefficient prefixed by α is small (≤ θ/2), then E[fα]2 ≤ θ2/4 < θ2/2. In

particular, if |α| = n and |f̂(α)| ≤ θ/2, α will not be output by the algorithm.

So the algorithm is both correct and efficient. All that remains is to show how to approximate E[f2
α].

If we had direct access to the Fourier coefficients of f , we could calculate this expectation directly by
choosing only those coefficients prefixed by α. Since we only have black-box access to f , we need the
following lemma.

While fα is defined as a sum over all Fourier coefficients prefixed by α, the following lemma lets us
calculate fα(x) by examing the values of f (not f̂) that are postfixed by x—a consequence of the duality
of the Fourier representation and the standard representation.

Lemma 6 For all f , for all 1 ≤ k ≤ n, for all α ∈ {±1}k, and all x ∈ {±1}n−k,

fα(x) = Ey∈{±1}k [f(yx)χα(y)].

3

Proof The Fourier representation of f(yx) is
∑

z f̂(z)χz(yx). Note that if |y| = |z1| and z = z1z2,
then χz(yx) = χz1(y)χz2(x). Plugging all of this back into the expectation over y, we get

Ey[f(yx)χα(y)] = Ey

[(∑
z1,z1

f̂(z1z2)χz1(y)χz2(x)

)
χα(y)

]
=

∑
z1,z2

f̂(z1z2)χz2(x)Ey [χz1(y)χα(y)]

By the orthonormality of the χ’s, this last expectation is 0 if z1 6= α and 1 when z1 = α. This reduces
the sum over z1 to the single value z1 = α, so we are left with

∑
z2

f̂(αz2)χz2(x), which is exactly fα(x).

This leads immediately to an algorithm for approximating Ex[fα(x)2]: sample on x to get this
expectation, and for each x, sample on y using the preceding lemma:

Algorithm approx(α)
for all i = 1 to m1

choose xi ∈R {±1}n−k

for all 1 ≤ j ≤ m2

choose yij ∈R {±1}k

let Ai = 1
m2

∑m2
j=1 f(yijxi)χα(yij)

return Bα = 1
m1

∑m1
i=1 A2

i

Since we are only approximating E[f2
α], this may lead to problems in our proof of correctness. Suppose

all Fourier coefficients prefixed by some α are small. Then we know the true expectation of f2
α can be at

most θ2/4. We can then choose m1 and m2 appropriately so that the probability of the approximation
being greater than θ2/2 (i.e. the probability of a false positive) is exponentially small.

As mentioned, the Goldreich-Levin algorithm shows up in many different areas of research under
various guises. It was discovered in cryptography, in the context of hardcore bits. The algorithm is also
related to list decoding of linear codes, and to learning, which we will discuss in subsequent lectures.

4

