1 DNF formulas

Definition 1 Given n variables x_1, \ldots, x_n, a DNF formula $F = F_1 \lor F_2 \lor \ldots \lor F_m$ on m clauses and n variables is a boolean formula where each clause F_i is of the form $F_i = y_1 \land y_2 \land \ldots$, and where the y_j are literals x_k or $\lnot x_k$.

Our goal is to uniformly randomly generate satisfying assignments of DNF formulas. Every non-trivial DNF formula has a satisfying assignment, because satisfying the formula reduces to satisfying a single clause F_i. For instance, to satisfy the formula $F = x_1 x_2 x_3 \lor \lnot x_1 x_2 x_4$, we could satisfy the first clause by choosing $x_1 = x_2 = T$, $x_3 = F$. As an aside, note that if the \lor are replaced by XORs \oplus, then F becomes a polynomial in the variables over \mathbb{Z}_2, and finding satisfying assignments reduces to random polynomial zero-finding.

Not surprisingly, generating satisfying assignments for a DNF formula is closely related to counting the number of such assignments. However, exact answers to this problem are difficult to obtain: the negation of a DNF formula is a so-called CNF formula, e.g. $(x \lor y \lor \lnot z) \land (x \lor \lnot x \lor y)$. CNF formulas are the subject of the famous 3CNF-SAT problem, which shows that finding satisfying assignments for CNF formulas with three variables per clause is NP-complete. Since counting the number of satisfying assignments of a DNF formula would reveal the existence of a satisfying assignment of its negation, counting the number of assignments is a problem of class #P.

We first find satisfying assignments when $m = 1$. In this case, F only has a single clause, e.g. $F_1 = x_1 x_2 \lnot x_3 \lor \lnot x_1 x_2 x_4$. We may generate all satisfying assignments of this clause by choosing $x_1 = T, x_2 = T, x_3 = F$, and arbitrary values for each other x_i. Note that there are 2^{n-3} satisfying assignments in all.

If we have more than one clause, we could simply pick a clause, then pick a random satisfying assignment for that clause. However, this procedure is biased toward assignments satisfying several different clauses. Because we want a uniform distribution of outputs, we use a slightly more complicated selection routine. For convenience, let S_i be the set of assignments satisfying F_i.

Algorithm A

To randomly generate π satisfying F:

1. **Step i:** Pick $i \in [m]$ with probability $\frac{|S_i|}{\sum |S_j|}$.
2. Then pick a random satisfying assignment π of F_i.
3. **Step ii:** Compute $\ell = |\{ j \in \{1,2,\ldots,m\} : \pi \in S_j \}|$.
4. Then toss a coin with bias $1/\ell$.
 - If the coin is “Heads”, OUTPUT π and halt.
 - Otherwise, restart at step i.

Intuitively, step i is the naive selection routine, and step ii compensates for assignments π in several S_i: if π is in ℓ different sets S_i, then each of these S_i should be $1/\ell$ times as likely to select π to ensure a uniform distribution. We now prove some claims about algorithm A:

Claim 2 Algorithm A outputs satisfying assignments uniformly at random.
Proof of Claim 2: It suffices to show that each loop iteration is equally likely to output all satisfying assignments \(\pi \). For a given \(\pi \), as before let \(\ell = |\{ j \in \{1, 2, \ldots, m \} : \pi \in S_j \}| \). By conditional probability,

\[
\Pr[\pi \text{ picked in step 1}] = \sum_{j \in [m] \text{ s.t. } \pi \in S_j} \Pr[\text{Step i picks clause } j] \frac{1}{|S_j|} = \frac{\sum_{j \in [m] \text{ s.t. } \pi \in S_j} |S_j|^{-1}}{\ell} = \frac{1}{\sum |S_j|^2}.
\]

So the probability that this loop iteration actually outputs \(\pi \) is \(\frac{1}{\ell \sum |S_j|^2} \), which is independent of \(\pi \).

Claim 3 The number of loops needed to choose \(\pi \) satisfies

\[E[\# \text{ loops until OUTPUT}] \leq m. \]

Proof of Claim 3: For each \(\pi \) examined, we have \(\ell \leq m \), giving \(1/\ell \geq 1/m \). A coin with bias \(p \) has \(1/p \) expected runs until it outputs “Heads”, so

\[E[\# \text{ loops}] = 1/bias \leq m. \]

2 P-relations

Definition 4 Let \(R \) be a binary relation \(R \subset \{0, 1\}^* \times \{0, 1\}^* \) on strings. We say \(R \) is a P-relation if

1. For each \((x, y) \in R\), we have \(|y| = O(\text{poly}(|x|))\).

2. There exists a polynomial time procedure for deciding if \((x, y) \in R\).

For example, consider \(R_{\text{SAT}} = \{(x, y) \mid x \text{ a boolean formula, } y \text{ a satisfying assignment of } x\} \).

Claim 5 We have \(L \in NP \) if and only if there exists a P-relation \(R \) such that \(x \in L \) holds if and only if there exists \(y \) with \((x, y) \in R\).

The (trivial) proof of this fact comes next time. Note that \(y \) can be thought of as “corroborating” whether \(x \in L \).