
6.895 Randomness and Computation March 8, 2006

Lecture 9

Lecturer: Ronitt Rubinfeld Scribe: Kunal Agrawal

1 Previous Lecture

We saw how to generate random satisfying assignments to a DNF formula. In this lecture, we see how
to approximately count the number of satisfying assignments to a DNF formula.

2 Definitions

Definition 1 R ⊆ {0, 1}∗ × {0, 1}∗ is p-relation if

• ∀(x, y) ∈ R, |y| = poly(|x|)

• ∃ p-time decision procedure for deciding (x, y) ∈ R

Example: RSAT = {(x, y)|x is a formula, y is a satisfiable assignment}

Definition 2 f : {0, 1}∗ → N ia in #P iff ∃ p-relation R s.t. ∀x, f(x) = |{y|(x, y) ∈ R}|

In other words, a problem is in #P if and only if the number of witnesses for the problem are
polynomial in the size of the problem. #P -complete problems are the hardest problems in #P . #CNF ,
#DNF and #MATCHING are all #P -complete problems.

Definition 3 A is an approximate counter for f iff ∀x,Pr[f(x)/(1+ε) ≤ A(x) ≤ f(x)(1+ε)] ≥ 3/4.
If the runtime of A is poly(|x| , 1/ε) then A is a “fully polynomial randomized approximation scheme”
(FPRAS).

Observation 4 There is no FPRAS for #CNF . If there were, then we could give a randomized algo-
rithm to solve SAT in polynomial time.

• SAT (x)=yes =⇒ #CNF (x) > 0 =⇒ FPRAS(x) > 0, with probability ≥ 3/4.

• SAT (x)=no =⇒ #CNF (x) = 0 =⇒ FPRAS(x) = 0, with probability ≥ 3/4.

Therefore, if we had an FPRAS for #CNF , we could answer SAT correctly with probability at least
3/4. This implies that if there existed FPRAS for SAT , so we would know that NP = RP .

Definition 5 R is a p-relation, f : {0, 1}∗ → N s.t. f(x) = |{y|(x, y) ∈ R}|. M is a uniform gener-

ator for R if on any x

• M ’s runtime is poly(|x|), and

• if f(x) > 0, then ∀y s.t. (x, y) ∈ R,Pr[M outputs y] = 1/f(x).

Definition 6 R is a p-reln, f : {0, 1}∗ → N s.t. f(x) = |{y|(x, y) ∈ R}|. M is a almost uniform

generator for R if on any x, ε

• M ’s runtime poly(|x| , 1/ε), and

• if f(x) > 0, then ∀y such that (x, y) ∈ R, then 1/((1 + ε)f(x)) ≤ Pr[M outputs y] ≤ (1 + ε)/f(x).

Here is the definition of self-reducibility given in the work of Jerrum, Valiant and Vazirani:

1

Definition 7 A relation R ⊆ Σ∗ × Σ∗ is self-reducible iff

1. There exists a polynomial time computable function g : Σ∗ → N such that if xRy then |y| = g(x).

2. There exists a polynomial time computable function ψ : Σ∗ × Σ∗ → Σ∗ and σ : Σ∗ → N satisfying

• σ(x) = O(log |x|) for all x ∈ Σ∗

• if g(x) > 0 then σ(x) > 0 for all x ∈ Σ∗

• |ψ(x,w)| ≤ |x| for all x,w ∈ Σ∗

• for all x ∈ Σ∗, y = y1, . . . , yn ∈ Σ∗,
< x, y1, . . . , yn >∈ R iff < ψ(x, y1, . . . , yσ(x)), yσ(x)+1, . . . , yn >∈ R

The function g gives the length of the solutions to instances, and σ gives the granularity of solutions
as follows: Given instance x and initial segment w of a witness y for x (i.e., (x, y) ∈ R), ψ gives an
instance x′ whose solutions are exactly those words which when concatenated with w form witnesses to
x.

For the purposes of this lecture, self-reducibility means solving a problem by solving smaller problems.
SAT is self-reducible. If we had an oracle P that solved a problem with n − 1 variables, then you can
use it to solve a problem with n variables, to solve SAT (Φ(x1 . . . xn)):

1. If P (Φ(0, x2, . . . xn)) = satisfiable, or P (Φ(1, x2, . . . , xn)) = satisfiable,

2. output satisfiable,

3. else output unsatisfiable.

3 FPRAS for #DNF

Most graph and optimization problems are self-reducible. Today, we use this property to show prove a
theorem of by Jerrum, Valiant and Vazirani.

Theorem 8 (Jerrum, Valiant, Vazirani) If R is a self-reducible P-relation, there is an FPRAS for
R iff there is a almost uniform generator (aug) for R.

The theorem means that approximate counting is equivalent to approximate uniform generation. We
are going to do the proof of SAT , and the only thing we use it is that SAT is self-reducible.

3.1 Reducing approximate uniform generation to approximate counting

For simplicity, first, we assume that we have an exact counter of #SAT , and generate exact uniform
generator. Then we relax this assumption to get an approximate generation from an approximate
counter.

We use a self-reducibility tree and each node of this tree corresponds to the settings of a prefix1.
The tree is shown in 3.1. At each node we get a formula, Φb1...bj

(xj+1...xn) = Φ(b1, ...bj , xj+1...xn). The
leaves are the full assignments. If we had an oracle for counting the number of solutions on both the
right and the left subtree of each node, then we can just do a biased random walk of the tree to generate
a solution uniformly at random.

Let the current node be (b1...bj),

1There was a question in class about what happens if two prefixes of a witness reduce to the same subproblem. This is

not be a problem, since as long as the prefixes are different, the witness that would be output would be distinct at each

leaf.

2

F=#SAT (x1,x2,…,xn)

F0=#SAT (0,x2,…,xn) F1=#SAT (1,x2,…,xn)

F00=#SAT (0,0,x3,…,xn)

. . .

Figure 1: Self-Reducibility Tree

• Use the exact counter to compute S0 = Fb1..bj ,1 and S1 = Fb1..bj ,0

• Go left with probability S0/(S0 + S1) and right with probability S1/(S0 + S1).

• output the leaf you reach.

The output is correct because for any assignment (b1, ..., bn) = b that the algorithm outputs,

• b is definitely a satisfying assignment.

•

Pr[output b] =
Fb1

F

Fb1,b2

Fb1

Fb1,b2,b3

Fb1,b3

... = 1/F. (1)

Now we prove that an approximate counter can be used in an approximate uniform generator using
exactly the same algorithm. What if we were using an ε′-FPRAS for counting instead of an exact
counter? The right hand side of the equation becomes: (1/F)(1 + ε′)n/(1 − ε′)n ≤ (1/F)(1/(1 − ε)2n).
Thus, if we want an ε-FPRAS for uniform generation, then it is sufficient to call the uniform counting
ε′-FPRAS where ε′ < ε/2n.

3.2 Reducing approximate counting to approximate uniform generation

Again, first, let us assume that we have a perfect uniform generator for RSAT , and try to get an
approximate counter. We will then relax the assumption and use the approximate generator. We look at
the self-reducibility tree, and let S1 = F1/F . We are interested in computing the number of solutions to
the formula, which is F = F1/S1. S1 can be computed by sampling, that is, generating some uniformly
distributed satisfying assignments (using our oracle for uniform genetation) and taking the ratio of the
ones where x1 = 1 and those with x1 = 0. F1 can be computed recursively.

Since we can only generate approximately uniform satisfying assignments, we can compute F1 and
S1 approximately. Approximations are represented with hats on the variables.

1. For b ∈ {0, 1}. Let Ŝb = Number of samples beginning with b/total number of samples

2. Now recursively estimate Fb by F̂b.

3. Estimate F via F̂b

Ŝb

.

3

Unrolling the recursion gives us:

F̂ =
F̂b1

Ŝb1

=
F̂b1b2

Ŝb1 Ŝb1b2
= ...

=
1

Ŝb1 Ŝb1b2 ...Ŝb1b2...bn

If we had exactly uniform generators and no sampling errors, then the recursion can go either left
or right, as long as the subtree had some satisfying assignment. But since we only have approximate
generators, we recurse on the subtree which has more satisfying assignments. We need to estimate each
Ŝb1...bj

to within ε/2n factor. Which gives F̂ ≤ (1 + ε)F and F̂ ≥ 1/(1 + ε)F .
There is a slight technical problem with using Chernoff bounds in this case, which forces us to recurse

on the side which we think has more satisfying assignments. The Chernoff bound says that:

Pr[Ŝb > (1 + δ)] ≤ e−δ2Sbm/3

where m is the number of samples. When Sb is very small, then the number of samples needed to
estimate the Ŝb upto reasonable accuracy gets bigger. Therefore, we need to go down the side with more
satisfying assignments.

4

