1 Estimating the Number of Connected Components

Given a graph $G(V, E)$ with max degree d and adjacency list representation and some ϵ, we want to give an additive estimate of the number of connected components to within ϵn.

1.1 Main Idea

Define:

$$ n_u \equiv \text{number of nodes in } u's \text{ component, where } u \in V $$

Fact 1 For any connected component $A \subseteq V$:

$$ \sum_{u \in A} \frac{1}{n_u} = \frac{1}{|A|} = 1 $$

In addition, there are $\sum_{u \in V} \frac{1}{n_u}$ connected components.

Determining this value exactly takes $O(n^2)$ time, but we will estimate the sum and the values of n_u.

Define:

$$ \hat{n}_u = \min \left\{ \text{nodes in } u's \text{ component}, \frac{2}{\epsilon} \right\} $$

$$ \hat{c} = \sum_{u \in V} \frac{1}{\hat{n}_u} $$

Fact 2 The error in estimating $\frac{1}{\hat{n}_u}$ is small.

$$ \left| \frac{1}{n_u} - \frac{1}{\hat{n}_u} \right| \leq \frac{\epsilon}{2} $$

Either $\hat{n}_u = n_u$ or $n_u > \hat{n}_u = \frac{2}{\epsilon}$. In the latter case, $\frac{\epsilon}{2} = \frac{1}{n_u} \geq \frac{1}{\hat{n}_u} \geq 0$. Therefore, the error is small, at most $\frac{\epsilon}{2}$.

Corollary 3 $\frac{1}{\hat{n}_u}$ is a good estimate of connected components.

$$ \sum_{u \in V} \left| \frac{1}{n_u} - \frac{1}{\hat{n}_u} \right| \leq \frac{\epsilon n}{2} $$

$$ c - \frac{\epsilon n}{2} \leq \frac{1}{\hat{n}_u} \leq c + \frac{\epsilon n}{2} $$

Fact 4 We can compute \hat{n}_u in $O(d \epsilon)$ time.

Take $\frac{2}{\epsilon}$ steps of a BFS. If we see the entire connected component, set $\hat{n}_u = n_u = \frac{1}{\text{size}}$. Otherwise, $\hat{n}_u = \frac{2}{\epsilon}$.

Summing these \hat{n}_u values yields a linear time algorithm. Now, we want to estimate this sum by estimating the average cluster size ($\sum_{u \in V} \frac{1}{\hat{n}_u}$) and multiplying by $|V|$.
1.2 Algorithm

APPROX_NUM_CC(G, ε)

Choose \(r = O(\frac{1}{\epsilon^3}) \) nodes \(u_1 \ldots u_r \)

\(\forall u_i \) compute \(\hat{n}_{u_i} \)

Output \(\hat{c} = \frac{n}{r} \sum_{i=1}^{r} \frac{1}{\hat{n}_{u_i}} \)

Runtime of this algorithm is \(O(\frac{1}{\epsilon^3} \cdot d) = O(\frac{d}{\epsilon^4}) \).

Theorem 5 \(\Pr[|\hat{c} - \tilde{c}| \leq \frac{\epsilon}{2} \] \geq \frac{3}{4} \)

Corollary 6 Since \(|c - \tilde{c}| \leq |c - \hat{c}| + |\hat{c} - \tilde{c}| \) and \(|c - \hat{c}| \leq \frac{3\epsilon}{2} \):

\[\Pr[|c - \hat{c}| \leq \epsilon n] \geq \frac{3}{4} \]

Proof of theorem: We know upper and lower bounds on our estimated average cluster size:

\(\forall i \epsilon \frac{\epsilon}{2} \leq \frac{1}{\hat{n}_{u_i}} \leq 1 \)

Using Chernoff bounds, we can compute the error probability for the estimated cluster size:

\[\Pr \left[\left| \frac{1}{r} \sum_{1 \leq i \leq r} \frac{1}{\hat{n}_{u_i}} - \Exp \left[\frac{1}{\hat{n}_{u_i}} \right] \right| > \epsilon \cdot \frac{1}{2} \right] \leq \exp \left(-O(r \Exp \left[\frac{1}{\hat{n}_{u_i}} \right] \cdot \left(\frac{\epsilon}{2} \right)^2) \right) \leq \frac{1}{4} \]

Here, using \(r = \frac{\epsilon}{2} \) samples is good enough for constant \(c \). The cutoff bound gets a better running time by bounding the maximum vs. minimum cluster sizes.

Likewise, we can see the error probability for the estimated sum:

\[\Pr \left[\left| \frac{n}{r} \sum_{1 \leq i \leq r} \frac{1}{\hat{n}_{u_i}} - n \cdot \Exp \left[\frac{1}{\hat{n}_{u_i}} \right] \right| \leq \epsilon \cdot \Exp \left[\frac{n}{\hat{n}_{u_i}} \right] \right] \geq \frac{3}{4} \]

\[\Pr \left[\left| \hat{c} - \tilde{c} (= \sum \frac{1}{\hat{n}_{u_i}}) \right| \leq \epsilon \cdot \hat{c} (= n) \right] \geq \frac{3}{4} \]

2 Minimum Spanning Tree

2.1 Definitions

Given a graph \(G = (V, E) \) of degree \(\leq d \), in adjacency list format and with edge weights \(w_{ij} \in 1 \ldots w \cup \infty \).

We will assume the graph is connected; i.e., there is a minimum spanning tree of finite weight.

For a tree \(T \subseteq E \):

\[w(T) = \sum_{(ij) \in T} w_{ij} \]

\[M = \min_{T \text{ spans } G} w(T) \]

We will assume that all weights are positive and finite, therefore \(n - 1 \leq M \leq \infty \).
2.2 Main Idea

Our goal is to output \(\hat{M} \) such that \((1 - \epsilon)M \leq \hat{M} \leq (1 + \epsilon)M \). This is close to an \(\epsilon \)-multiplicative estimate because \(\frac{1}{1 + \epsilon} \approx 1 - \epsilon \).

Given a graph \(G \):

\[
\begin{align*}
G^{(i)} &= \text{edges of } G \text{ which have weight at least } i \\
c^{(i)} &= \text{number of connected components in } G^{(i)}
\end{align*}
\]

So the number of edges of weight at least \(k \) is \(c^{(k-1)} - 1 \).

For example:

\[
\begin{array}{c|c|c}
G^{(1)}, c^{(1)} = 2 & G^{(2)}, c^{(2)} = 1 & \text{MST}(G) = (n - 1) + (c^{(1)} - 1) = n - 2 + c^{(1)} = 4 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
G^{(1)}, c^{(1)} = 3 & G^{(2)}, c^{(2)} = 2 & G^{(3)}, c^{(3)} = 1 & \text{MST}(G) = (n - 1) + (c^{(1)} - 1) + (c^{(2)} - 1) = n - 3 + c^{(1)} + c^{(2)} = 7
\end{array}
\]

Claim 7 \(\text{MST}(G) = n - w + \sum_{1 \leq i \leq w-1} C^{(i)} \)

Proof

Let \(\alpha_i \) = the number of weight \(i \) edges in the MST.

Fact 8 For any MST of \(G \), \(\alpha_i \)’s are the same. Note that \(\sum_{i=l+1}^{w} \alpha_i = c^{(l)} - 1 \), and in particular \(\sum_{i=1}^{w} \alpha_i = n - 1 \); \(\alpha_w = c^{(w-1)} - 1 \).

\[
\begin{align*}
\text{MST}(G) &= \sum_{i=1}^{w} i \alpha_i \\
&= \sum_{i=1}^{w} \alpha_i + \sum_{i=2}^{w} \alpha_i + \ldots + \alpha_w \\
&= n - 1 + c^{(1)} - 1 + c^{(2)} - 1 + \ldots + c^{(w-1)} - 1 \\
&= n - w + \sum_{i=1}^{w-1} c^{(i)}
\end{align*}
\]
2.3 Algorithm

MST_APPROX_ALG(G, \epsilon, w)

\[\text{for } i = 1 \ldots w - 1\]
\[\hat{c}(i) = \text{APPROX_NUM_CC}(G^{(i)}, \frac{\epsilon}{w})\]
\[\text{Output } \hat{M} = n - w + \sum_{i=1}^{w-1} c(i)\]

Run time:
There are \(w\) calls to APPROX_NUM_CC (run time \(O(d/(\epsilon^{w})^{4})\)), for an overall run time of \(O\left(\frac{dw^5}{\epsilon^4}\right)\).

Because this running time depends on \(w\), it is best when there is a good max to min ratio of edge weights.

Sketch of Proof
\[\forall i |c^{(i)} - \hat{c}(i)| \leq \frac{\epsilon}{w} n\] (with high enough probability) then \(|M - \hat{M}| \leq \epsilon n\).

Since \(M > n\):
\[(1 - \epsilon)M \leq \hat{M} \leq M + \epsilon n \leq M + \epsilon M = (1 + \epsilon)M\]

The lower bound is proved similarly. \(\blacksquare\)