Homework 3

Lecturer: Ronitt Rubinfeld
Due Date: April 2, 2008

Homework guidelines: Same as for homework 1.

1. In this problem, we consider the sample complexity required to learn the class of monotone functions mapping $\{+1,-1\}^{n}$ to $\{+1,-1\}$ over the uniform distribution (without queries).
(a) Show that

$$
\sum_{|S| \geq \operatorname{lnf}(f) / \epsilon} \hat{f}(S)^{2} \leq C \cdot \epsilon
$$

where $\operatorname{Inf}(f)$ is the influence of f, and C is an absolute constant.
(b) Show that the class of monotone functions can be learned to accuracy ϵ with $n^{\Theta(\sqrt{n} / \epsilon)}=$ $2^{\tilde{O}(\sqrt{n} / \epsilon)}$ samples under the uniform distribution.
2. Let G be a bipartite graph with n left vertices and n right vertices. We say that G is a (bipartite) (α, γ)-expander if for any set S of at most αn left vertices, the size of the neighborhood of S is at least $\gamma|S|$.
We construct an expander G by independently and uniformly choosing D right neighbors for each left vertex.
(a) Let S be a subset of left vertices of G. Imagine that we add edges outgoing from S one by one. Argue that the probability that a new edge connects S with a right node that was already in the neighborhood of S is at most $D|S| / n$.
(b) Prove that the probability that the neighborhood of S is smaller than $|S|(D-2)$ is at most $\binom{D|S|}{2|S|}\left(\frac{D|S|}{n}\right)^{2|S|}$.
(c) Show that for every D, there is a constant $\alpha>0$ such that the probability that there is a subset of $t \leq \alpha n$ left vertices that has a neighborhood smaller than $(D-2) t$ is at most 4^{-t}.
Hint: Use the inequality $\binom{n}{k} \leq\left(\frac{n \cdot e}{k}\right)^{k}$.
(d) Conclude that G is a bipartite $(\alpha, D-2)$-expander with probability at least $1 / 2$.
3. In this problem we develop an efficient approximation algorithm for counting the number of satisfying assignments to a DNF formula $C_{1} \vee \ldots \vee C_{m}$.
(a) Explain why the naive algorithm that uniformly and indepedently picks random assignments and estimates the fraction of those that satisfy the formula is not what we want.
(b) Let S be a subset of $\{0,1\}^{n} \times\{1, \ldots, m\}$ that consists of pairs (x, i) such that the assignment x satisfies C_{i}. Show that one can efficiently compute the exact size of S in time polynomial in n and m.
(c) Show how to uniformly generate a random element from S in time polynomial in n and m.
(d) Let

$$
S^{\prime}=\{(x, i) \mid \text { there is no }(x, j) \in S \text { s.t. } j<i\} .
$$

Why does $\left|S^{\prime}\right|$ equal the number of assignments satisfying the DNF formula? How can one check if an element of S belongs to S^{\prime} in time polynomial in n and m ?
(e) Show that $m \cdot\left|S^{\prime}\right| \geq|S|$, and using this, show that a $(1+\epsilon)$ approximation to the size of S^{\prime} can be computed in time polynomial in n, m, and $1 / \epsilon$. (Hint: Estimate $\left|S^{\prime}\right| /|S|$.)
4. (Due 04/07) Let us first introduce a few definitions.

- Let D be a distributions on n bit strings and f be a function on n bit inputs. We say that f is ϵ-hard on D for size g if for any Boolean circuit C with at most g gates, and for x chosen according to $D, \operatorname{Pr}[C(x)=f(x)] \leq 1-\epsilon$.
- Let M be a measure. If for any circuit C of size $g, \operatorname{Adv}_{C}(M)<\gamma|M|$, we call f γ-hard-core on M for size g. We call $f \gamma$-hard-core on S for size g if it is hard on the characteristic function of S with the same paramters. We call $f \gamma$-hard-core for size g if f is on the set of all inputs for the same parameter.

Show the following:
(a) Let f be ϵ-hard for size g on the uniform distributions on n-bit strings, and let $0<\delta<1$. Then there is a measure M with with $\mu(M) \geq \epsilon$ so that f is δ-hard-core on M for size $\epsilon^{2} \delta^{2} g / 4$.
Update: Assume that $\epsilon^{2} \delta^{2} g / 4$ is greater than a constant C such that for any i, there is a circuit of size at most $C \cdot i$ that computes majority of i bits.
(b) Let M be a measure such that f is $\delta / 2$-hard-core on M for size $g \in\left(2 n,(1 / 8)\left(2^{n} / n\right)(\epsilon \delta)^{2}\right)$, and assume $\mu(M) \geq \epsilon$. Then there is a set S such that f is 2δ-hard-core on S for size g with $|S| \geq \frac{\epsilon \cdot 2^{n}}{2}$.
Hint 1: Show that the number of circuits on size g is at most

$$
(2(2 n+g))^{2 g} \leq 2^{2 n g} \leq \frac{1}{4} \cdot e^{2^{n} \epsilon^{2} \delta^{2}} .
$$

Hint 2: You can use Hoeffding's inequality. Let X_{1} to X_{n} be independent variables such that for each i, there is a_{i} such that $X_{i} \in\left[a_{i}, a_{i}+1\right]$. Let $S=\sum_{i=1}^{n} X_{i}$. It then holds

$$
\operatorname{Pr}(S-E[S] \geq n t) \leq e^{-2 n t^{2}}
$$

