Homework 4

Lecturer: Ronitt Rubinfeld

1. Given a boolean function $f(\cdot)$ on boolean inputs, a sequence $C=C_{1}, C_{2}, \ldots$ of circuits is a circuit family for $f(\cdot)$ if C_{n} has n inputs and computes $f\left(x_{1}, \ldots, x_{n}\right)$ at its output for all n bit inputs $\left(x_{1}, \ldots, x_{n}\right)$. The family C is said to be polynomial-sized if the size of C_{n} is bounded above by $p(n)$ for every n, where $p(\cdot)$ is a polynomial. A randomized circuit family for $f(\cdot)$ is a circuit family for $f(\cdot)$ that, in addition to the n inputs x_{1}, \ldots, x_{n}, takes m inputs r_{1}, \ldots, r_{m}, each of which is equiprobably and independently 0 or 1 . In addition, for every n, circuit C_{n} must satisfy
(a) if $f\left(x_{1}, \ldots, x_{n}\right)=0$ then output 0 regardless of the values of the random inputs r_{1}, \ldots, r_{m}.
(b) if $f\left(x_{1}, \ldots, x_{n}\right)=1$ then output 1 with probability $\geq 1 / 2$.

Show: If a boolean function has a randomized polynomial sized circuit family, then it has a polynomial sized circuit family.
2. You are given a 2-SAT formula $\phi\left(x_{1}, \ldots, x_{n}\right)$. Consider the following algorithm for finding a satisfying assignment:

- Start with an arbitrary assignment. If it's satisfying, output it and halt.
- Do s times:
- Pick an arbitrary unsatisfied clause
- Pick one of the two literals in it uniformly at random
- Complement the setting of the chosen literal
- If the new assignment satisfies ϕ, output the assignment and halt.

Show that if you pick s to be $O\left(n^{2}\right)$, you will output a satisfying assignment with probability at least $3 / 4$.
3. Let $G(V, E)$ be a graph with n vertices such that for some constant $\alpha>0$, and every set $S \subseteq V$ with $n / 2$ vertices,

$$
|\{w \in V \mid \exists v \in S,(v, w) \in E\}| \geq \frac{n}{2}+\alpha n .
$$

For any positive integer k, let W_{1}, \ldots, W_{k} be subsets of V of size at least $(1-\alpha) n$ each. Show that there exists a path $\left(v_{1}, \ldots, v_{k}\right)$ in G such that for $1 \leq i \leq k, v_{i} \in W_{i}$.
4. A d-regular graph has (K, A)-vertex expansion if $\forall S \subset V,|S| \leq K,|\lambda(S)| \geq A|S|$ where $\lambda(S)=\mid\{u \mid \exists v \in S$ s.t. $(u, v) \in E\} \mid$. For a probability distribution π over $[n]$, the collision probability is

$$
\|\pi\|^{2}=\sum_{x} \pi_{x}^{2}
$$

Show that the following is true:

- $\|\pi\|^{2} \geq \frac{1}{|S(\pi)|}$ where $S(\pi)=\left\{x \mid \pi_{x}>0\right\}$.
- $\|\pi\|^{2}=\|\pi-u\|^{2}+\frac{1}{n}$ where u is the uniform distribution.
- If there is a constant $\lambda<1$ such that the transition matrix of G is such that $\left|\lambda_{2}\right| \leq \lambda$ then for any $\alpha<1, G$ has vertex expansion $\left(\alpha n, \frac{1}{(1-\alpha) \lambda^{2}+\alpha}\right)$.

Remark: We use the convention that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$, where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of the random walk matrix.
5. (optional) Let $G=(V, E)$ be a d-regular, α-expander, i.e., $\forall S \subset V,|S| \leq|V| / 2,|\lambda(S) \backslash S| \geq$ $\alpha|S|$ (λ is defined as above). Let $n=|V|$. Suppose a set of pairs $S=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{q}, b_{q}\right)\right\}$ are such that a_{i} and b_{i} are chosen uniformly and independently from V for all i. Show that for all a, b, there is a path connecting a, b of length $O(\log n)$. Show that there exists a way of connecting each a_{i}, b_{i} pair via a path of length $O(\log n)$, such that no edge is used more than $O(\log n)$ times in total over all paths.
Hint: for each $\left(a_{i}, b_{i}\right)$ pair, choose a random x_{i}. Show how to pick a "random" path from a_{i} to x_{i} and from b_{i} to x_{i}. Show that your method is such that no edge is used more than $O(\log n)$ times in total.

