
6.842 Randomness and Computation April 28, 2008

Homework 5

Lecturer: Ronitt Rubinfeld Due Date: May 7, 2008

1. Prove that for every function Ext : {0, 1}n → {0, 1}, there is an SV-source X with
parameter δ such that Pr[Ext(X) = 1] ≤ δ or Pr[Ext(X) = 1] ≥ 1 − δ.

2. First prove a seemingly strange claim about extractors that take semi-random bits but get
no truly random bits, and then use it to show something interesting about extractors that
take both semi-random and truly random bits. (As defined in class, if the Ext function
has only one parameter, then it refers to the former type of extractor, otherwise it refers
to the latter type).

(a) Show the following: For any n and any k < n and any flat k-source X, if an
extractor Ext : {0, 1}n → {0, 1}m with m = k − 2 log 1

ǫ
− O(1) is chosen at random

from the functions mapping {0, 1}n to {0, 1}m, then with probability at least 1 −

2−Ω(2kǫ2), Ext(X) is ǫ-close to Um (the uniform distribution on m bits) with respect
to statistical distance.

(b) Then show that: For any n and k < n, and any ǫ > 0, there exists a (k, ǫ)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = k + d − 2 log 1

ǫ
− O(1) and d = log(n −

k) + 2 log 1
ǫ

+ O(1).

3. We say that an undirected graph on n nodes is labeled if the edges adjacent to each vertex
are labeled with numbers from 1 to n, and no two edges are labeled with the same number.
An edge may be labeled differently on each of its endpoints.

Given is a labeled graph G on n nodes, a node v in G, and a string s = (s1, . . . , sk) ∈
{1, . . . , n}⋆. Consider the following procedure. Our initial position is v. In the i-th step,
if there is an edge adjacent to the current node, labeled with si, we follow that edge.
Otherwise, we stay at the current node. We call s a (G, v)-cover if it can be used to visit
all vertices of G by following to the above procedure.

A string s ∈ {1, . . . , n}⋆ is a universal traversal sequence for size n if for every labeled
connected graph G on n nodes and every node v in G, s is a (G, v)-cover.

(a) Show that there exists a universal traversal sequence for size n of length nO(1).

(b) Show that there exists a universal traversal sequence for size n of length nO(log n)

that can be constructed in nO(log n) time.

Hint: You may use the following outline:

• Design a logarithmic space algorithm A that given a labeled graph G and two
nodes i and j, simulates a random walk starting from i, and accepts the input
if it visits j, which happens with probability at least 1 − 1

3n2 , if i and j are in
the same connected component.

• Derandomize A so that it still runs in polynomial time, but uses only O((log n)2)
random bits, and accepts every input with i and j in the same connected com-
ponent with probability at least 1 − 1

2n2 . Denote the new algorihm by A′.

1



• Argue that for each labeled connected graph G on n nodes there is a seed r such
that for each pair of nodes (i, j), A′ accepts (G, i, j).

• Conclude the proof of the claim, by showing how to construct a universal traver-
sal sequence.

4. (optional, don’t turn it in) Recall that a bipartite graph (V1, V2, E) is a (K,α) bipartite

expander, if every set W ⊆ V1 of size at most K is adjacent to at least α|W | vertices in
V2. In this problem, we consider a (K, (1 − ǫ)D) bipartite expander G = (V1, V2, E) with
the degree of each vertex in V1 equal to D. Prove first the following properties of G:

• For a set W ⊆ V1, a vertex v ∈ V2 is a unique neighbor of W if it is incident to
exactly one edge from W . Show that every set W ⊆ V1 of size at most K has at
least (1 − 2ǫ)D|W | unique neighbors.

• Show that for every set W ⊆ V1 of size at most K/2, there are at most |W |/2 vertices
in V1\W that share at least δD neighbors with W , for some δ = O(ǫ).

Let N = |V1| and M = |V2|. We will now see how to use G to store a small subset Y
(where |Y | ≤ K/2) of a large domain X (where |X| = N), and test membership in Y by
probing only one bit. We identify elements of X with nodes in V1. From now on, assume
that X = V1. Our data structure consists of M bits assigned to nodes of V2. Ideally, we
would like that for any element x ∈ X, all the bits assigned to the neighbors of x be 1, if
x ∈ Y , and 0, otherwise. We cannot achieve this property in small space, but instead we
can get the following relaxed property.

Property P: For all x ∈ X, all but a δ = O(ǫ) fraction of the neighbors of x
are assigned 1, if x ∈ Y , and 0, if x 6∈ Y .

Prove the following:

• If we store an assignment that has Property P, we can test membership in Y with
error probability δ, by reading one bit of the data structure.

• An assignment satisfying Property P exists for any Y of size at most K/2.

It turns out that there exist expanders that we need with M = O(K log N), for any ǫ > 0.
Therefore, we can construct a data structure of size O(K log N) which allows for testing
membership in Y ⊆ {1, . . . , N} by probing just one bit.

5. (optional, don’t turn it in) Let A be a one-sided error polynomial-time algorithm for a
language L that errs with probability at most 1/2, and uses r random bits. We saw
in class how to turn A into a one-sided error polynomial-time algorithm that errs with
probability at most 2−k, and only uses r + O(k) random bits. Show that techniques you
learnt in class can be used to get a similar algorithm that only uses O(r log k) random
bits.
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