
6.895 Randomness and Computation February 11, 2008

Lecture 2

Lecturer: Ronitt Rubinfeld Scribe: Shira Mitchell

1 Probabilistic Method

Last time we used randomness to speed up algorithms. Today we will use randomness to prove theorems
by Erdös probabilistic method. The motto: if you probably exist, then you must exist. In other words,
if the probability that an object exists is greater than zero, then it exists.

1.1 Existence of a 2-coloring

We begin by a simple example, demonstrating how the probabilistic method can be applied to the
problem of showing the existence of a 2-coloring in sets.

Given subsets S1, . . . Sm ⊆ S, ∀i|Si| = l, is it possible to color each element of S such that none of the
Si are monochromatic (e.g. all red or all blue)? In general, you can’t know without explicitly checking
all of the colorings. However, we can show that the answer is always “yes” when m < 2l−1.

Theorem 1. If m < 2l−1, there always exists a proper 2-coloring.

Proof. Randomly assign a color (blue or red) to each element of S independently with probability 1
2 red

and 1
2 blue.

∀i, Pr[Si is monochromatic] = Pr[Si is all blue] + Pr[Si is all red]

=
1

2l
+

1

2l
=

1

2l−1
.

Pr[any Si is monochromatic] ≤
∑

i

Pr[Si is monochromatic]

= m
1

2l
< 1.

Here we made use of the union bound, which says that Pr(A ∪B) ≤ Pr(A) + Pr(B) for any two events
A and B. Since the probability that any of the Si is monochromatic is less than 1, the probability that
none of the Si are monochromatic is greater than 0, showing the existence of such a coloring.

1.2 Sum-free sets of integers

Let A be a subset of positive integers (strictly > 0).

Definition 2. A is sum-free if there do not exist a1, a2, a3 ∈ A such that a1 + a2 = a3.

Theorem 3 (Erdös ’65). ∀B = {b1, ..., bn}, ∃ sum-free A ⊆ B such that |A| > n/3.

For example, if B = {1, ..., n}, we can take A = {⌈n/2⌉, ..., n}.

Proof. Without loss of generality, assume bn is the maximum, i.e. bn ≥ bi ∀i.
Pick a prime p ≥ 2bn such that p ≡ 2 (mod 3), i.e. p = 3k + 2 for some integer k.

Let C = {k + 1, ..., 2k + 1}. Notice that

• C is sum free,

• C ⊆ Zp,

1



• |C|/(p − 1) = (k + 1)/(p − 1) = (k + 1)/(3k + 1) > 1/3.

Pick x ∈R {1, ..., p− 1} = Z
∗
p. Set di ≡ xbi (mod p).

Claim 4. ∀i and for each y ∈ Z
∗
p, there is exactly one choice of x ∈ Z

∗
p such that y ≡ xbi (mod p).

Proof. First note that there exists such an x since we can let x ≡ yb−1
i because bi is strictly positive and

less than p, it is nonzero mod p, so it has an inverse mod p (Zp is a field). Since y and bi are nonzero
mod p, so is x. This x is unique mod p, because if x1bi ≡ x2bi (mod p), then multiplying by b−1

i gives
x1 ≡ x2 (mod p).

Let Ax be the preimage of C under x. We know that Ax is sum-free, because bi + bj = bk implies
xbi + xbj ≡ xbk (mod p), and we get a contradiction since C is sum-free.

How big is Ax? By the above claim, there are exactly |C| choices of x such that xbi is in C. Let σi

be 1, when xbi is in C, and 0, otherwise. Thus, Pr[σi = 1] = E[σi] = |C|/(p − 1) > 1/3. By linearity of
expectation, E[|Ax|] = E[

∑n
i=1 σi] > n/3. Thus, there exists an x such that |Ax| > n/3 (since there has

to be some value that is at least the average).

How tight is this bound? 12/29 is know to be an upper bound. The exact optimum, which lies
between 12/29 and 1/3, remains unknown.

2 The Boolean function f : {0, 1}n → {0, 1}

The Boolean function can be interpreted in a variety of ways, e.g.:

• as a truth table of a function (Complexity Theory),

• as a subset of the discrete cube (Coding Theory, Combinatorics),

• as a concept (Learning Theory).

We will consider all of these views in this course. We will develop tools from Fourier analysis for studying
Boolean functions.

2.1 Linearity Testing

We begin with a specific task. Assume we have some black box that takes inputs x and gives outputs
f(x). We can’t look into the box and see anything about f . We know nothing about f ’s internal
structure; all we can do is query it, meaning we can pass in a value of x and get out a value of f(x).

Definition 5. A function f : {0, 1}n → {0, 1} is linear (or homomorphic) if ∀x, y, f(x)+f(y) = f(x+y).
(Where the first + is over Z2 and the second + is over Z

n
2 : (a1, ..., an)+(b1, ..., bn) = (a1+b1, ..., an+bn).)

Examples of linear functions:

• f(x) = 0

• f(x) = x1

• f(x) = (x1 + x10) mod 2

• fy(x) = x · y = (
∑n

i=1 xiyi) mod 2, there are 2n such functions, they are called parity functions
and in fact, they are the only linear functions, because once you define f on a basis, everything
else is determined.

2



Problem: Can we tell if an arbitrary function f is linear, if we view f as a black box? To find out
whether f is linear, we need to query every single value in the domain. To see this suppose every query
returns 0. If there is an input on which we don’t evaluate the function, it may be the only input for
which f takes on 1, and our queries don’t let us distinguish between linear and non-linear functions.

Definition 6. A function f : {0, 1}n → {0, 1} is ǫ-close to linear if there exists a function g s.t.

• g is linear,

• Pr[f(x) 6= g(x)] ≤ ǫ.

Otherwise we say that f is ǫ-far from linear.

How can we test if f is ǫ-close to linear without testing all of the values in the domain (2n queries)?

2.1.1 Proposal

Here’s a proposed test of linearity:

Repeat r = O(1/ρ · ln 1/δ) times:
Pick x, y ∈R {0, 1}n.
If f(x) + f(y) 6= f(x + y) output FAIL, and halt.

Output PASS.

2.1.2 Standard Claim

Claim 7.

1. If f is linear, then the above algorithm always outputs PASS.

2. If f is s.t. Pr[f(x) + f(y) 6= f(x + y)]> ρ, then Pr[output FAIL] ≥ 1 − δ.

Part 1. of the above claim is obviously true, so it remains to prove Part 2.

Proof of 2. We will use the fact that (1 − x)1/x ≤ e−1.
Pr[output “Pass”] ≤ (1 − ρ)r = (1 − ρ)O(1/ρ ln 1/δ) = (1 − ρ)c(1/ρ ln 1/δ) ≤ e−c ln 1/δ = δc ≤ δ.

We have a characterization of linear functions: ∀x, y f(x) + f(y) = f(x + y). We know that test
we have presented rejects functions for which the above condition does not hold for many pairs (x, y).
How do we know that there are no linear functions that are ǫ-far from any linear functions, and yet
f(x) + f(y) = f(x + y) does not hold for only very few pairs. We want a characterization of ǫ-close to
linear functions, and we would like to use Pr[f(x) + f(y) = f(x + y)] in it.

2.1.3 Great Notational Switch

We now consider f : {−1, 1}n → {−1, 1} where we consider −1 to be like 1 and 1 to be like 0. We
replace

+ 0 1
0 0 1
1 1 0

with

× 1 -1
1 1 -1
-1 -1 1

3



Definition 8. For S ⊆ {1, ..., n}, we define χS(x) =
∏

i∈S xi.

Notice that if x ∈ {−1, 1}n has an even number of −1’s in S, then χS(x) = 1, like in the old notation
if x ∈ {0, 1}n had an even number of 1’s in S then

∑

i∈S xi mod 2 = 0. Similarly, if x ∈ {−1, 1}n has
an odd number of −1’s in S, then χS(x) = −1, like in the old notation if x ∈ {0, 1}n had an odd number
of 1’s in S then

∑

i∈S xi mod 2 = 1.

2.1.4 Linearity Test

We now have

f(x)f(y)f(x · y) =

{

1 if test passes

−1 if test fails

This suggests the introduction of an indicator function

δ(x, y) =
1 − f(x)f(y)f(x · y)

2
=

{

0 if test passes

1 if test fails

which gives us a nice relation with the probability that a single execution of the test fails:

Pr[a single iteration of the test fails] = Ex,y[δ(x, y)].

4


