
6.895 Randomness and Computation February 13, 2008

Lecture 3

Lecturer: Ronitt Rubinfeld Scribe: Megumi Ando

Last Time

In the previous lecture, we made a notational switch from using Boolean functions of the form f :
{0, 1}n → {0, 1} to functions of the form f : {−1, 1}n → {−1, 1}. We defined linearity over this form,
and what it meant to be ǫ-close to linear.

Definition 1 f : {−1, 1}n → {−1, 1} is linear if ∀x, y ∈ {−1, 1}n, f(x)f(y)f(x · y) = 1,
where x · y = (x1...xn) · (y1...yn) = (x1y1, x2y2, ..., xnyn).

There are 2n linear functions over {−1, 1}n → {−1, 1}. Each of them can be written as χS(x) =
∏

i∈S xi, where S ⊆ {1, ..., n}.

Definition 2 A function f is ǫ-close to linear if ∃ linear g such that Prx[f(x) 6= g(x)] ≤ ǫ. Otherwise,

f is ǫ-far.

Finally, we proposed the following linearity tester:

• Repeat O
(

1
ρ

log 1
β

)

times:

– Pick x, y ∈ {−1, 1}n.

– If f(x)f(y)f(x · y) 6= 1, output “FAIL” and halt.

• Output “PASS.”

The rejection probability of one pass through the loop is δ ≡ Ex,y

[

1−f(x)f(y)f(x·y)
2

]

.

1 Fourier Analysis (Basics)

We will use a few times the following simple fact about linear functions.

Fact 3
χS(x) · χT (x) =

∏

i∈S

xi ·
∏

j∈R

xj =
∏

i∈S△T

xi,

where S△T is the symmetric difference of S and T , i.e., the set of elements that appear in exactly one

of the sets S and T .

1.1 Vector Space of Functions g : {−1, 1}n → R

The set G = {g|g : {−1, 1}n → R} is a vector space of dim 2n.

Definition 4 Indicator functions are functions of the form: If x = a, then ea(x) = 1. Otherwise,

ea(x) = 0.

Note that the indicator functions are basis functions of G. However, we will not be using them.
Instead we will be using the parity functions, {χS}S⊆[n], described in the previous lecture.
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Definition 5 For f, g : {−1, 1} → {−1, 1}, the “inner product”

〈f, g〉=
1

2n

∑

x∈{−1,1}n

f(x)g(x),

where the sum
∑

f(x)g(x) is the “correlation,” a measure of how often f and g agree.

Note that:

1. < χS , χS >= 1
2n

∑

x∈{−1,1}n χ2
S(x) = 1. (Absolute correlation.)

2. If S 6= T ,

< χS , χT > =
1

2n

∑

x∈{−1,1}n

χS(x)χT (x)

=
1

2n

∑

x∈{−1,1}n

∏

i∈S

xi

∏

j∈T

xj (by definition)

=
1

2n

∑ ∏

i∈S△T

xi (by Fact 3)

where S△T is non-empty. Therefore, there exists a j ∈ S△T . Let x⊕j equals x with the j-th bit flipped.

=
1

2n

∑

pairs (x,x⊕j)



xj

∏

i∈S△T\{j}

xi + xj

∏

i∈S△T\{j}

xi





= 0

From Notes 1 and 2 above, we see that every parity function XS is normal to the others, and thus, the
parity functions form an orthonormal basis.

1.2 Fourier Coefficients

The following corollary follows.

Corollary 6

∀f , f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where f̂(z) is the Fourier coefficient, which can be calculated as follows:

f̂(S) = 〈f, χS〉

=
1

2n

∑

x∈{0,1}n

f(x)χS(x)

In particular, a parity function has all but one coefficients equal zero.

Fact 7 (Fourier Coefficients of Parity Functions χT )

f = χT ⇐⇒ f̂(T ) = 1.

Furthermore, ∀S 6= T, f̂(S) = 0.

2



A few more examples of Fourier coefficients:

Function Fourier Representation

f(x) = 1 1 · χ∅

f(x) = xi 1 · χ{i}

and(x1, x2)
1
2χ∅ + 1

2χ{1} + 1
2χ{2} −

1
2χ{1,2}

maj(x1, x2, x3)
1
2χ{1} + 1

2χ{2} + 1
2χ{3} −

1
2χ{1,2,3}

1.3 Fourier Coefficients and Distance to Linearity

Let dist(f, g) denote the fraction of inputs on which two Boolean functions f, g : {−1, 1}n → {−1, 1}
disagree. That is, dist(f, g) = Prx∈{−1,1}n [f(x) 6= g(x)]. For instance, the distance between two different
parity functions is 1/2.

Fact 8 For S 6= T , dist(χS , χT ) = 1
2 .

It turns out that Fourier coefficients can be used to express the distance of a function to a given
linear function.

Fact 9 (Agreement of f with Linear Functions) For f : {−1, 1}n → {−1, 1},

f̂(S) = 1 − 2 dist(f1, χS).

Proof

2nf̂(s) =
∑

x

f(x)χS(x)

=
∑

x s.t. f(x) = χS(x)

f(x)χS(x) +
∑

x s.t. f(x) 6= χS(x)

f(x)χS(x)

= 2n − 2|{x|f(x) 6= χS(x)}|

= 2n

(

1 − 2
|{x|f(x) 6= χS(x)}|

2n

)

f̂(s) = 1 − 2 dist(f1 · χS)

1.4 Plancherel’s Theorem

The following simple theorem holds.

Theorem 10 (Plancherel’s Theorem) For f, g : {−1, 1} → R,

〈f, g〉 = Ex[f(x) · g(x)] =
∑

S⊆[n]

f̂(S)ĝ(S).
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Proof

〈f, g〉 =

〈

∑

S

f̂(S)χS(x),
∑

T

ĝ(T )χT (x)

〉

=
∑

S

∑

T

f̂(S)ĝ(T ) 〈χS(x), χT (x)〉

=
∑

S=T

f̂(S)ĝ(T ) · 1 =
∑

S

f̂(S)ĝ(S)

The theorem yields multiple useful properties.

Corollary 11 (Parseval’s identity) For f : {−1, 1}n → R, 〈f, f〉 =
∑

f̂2(S).

Corollary 12 For f : {−1, 1}n → {−1, 1},
∑

f̂2(S) = 〈f, f〉 = 1.

Corollary 13

Ex[χS(x)] =

{

1 if S = ∅,
0, otherwise.

2 Analysis of the Proposed Linearity Tester

Recall that δ is the probability that a single pass through the loop detects that the input function f is
not linear, and it can be expressed as

δ = Ex,y

[

1 − f(x)f(y)f(x · y)

2

]

.

Lemma 14 (Main Lemma) 1 − δ = 1
2 + 1

2

∑

S⊆[n] f̂
3(S)

Proof

1 − δ = Ex,y

[

1 + f(x)f(y)f(xy)

2

]

=
1

2
+

1

2
Ex,y[f(x)f(y)f(xy)]

Ex,y[f(x)f(y)f(xy)] = Ex,y[(
∑

S

f̂(S)χS(x))(
∑

T

f̂(T )χT (y))(
∑

U

f̂(U)χU (x · y)]

=
∑

S,T,U

f̂(S)f̂(T )f̂(U)Ex,y[χS(x)χT (y)χU (x · y)]

Ex,y[χS(x)χT (y)χU (x · y)] = Ex,y[
∏

i∈S

xi

∏

j∈T

yj

∏

k∈U

xkyk]

= Ex,y[
∏

i∈S△U

xi

∏

j∈T△U

yj ]

= Ex[χS△U (x)]Ey [χT△U (y)]

Ex[χS△U (x)] =

{

1 if S = U ,
0, otherwise

Ey[χT△U (y)] =

{

1 if T = U ,
0, otherwise
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So, Ex,y[χS(x)χT (y)χU (x · y)] is non-zero if and only if S = T = U . If S = T = U , then the
expectation is 1. Hence,

Ex,y[f(x)f(y)f(xy)] =
∑

S,T,U

f̂(S)f̂(T )f̂(U)Ex,y[χS(x)χT (y)χU (x · y)] =
∑

S

f̂3(S)

and

1 − δ =
1

2
+

1

2
Ex,y[f(x)f(y)f(xy)] =

1

2
+

1

2

∑

S

f̂3(S).

Theorem 15 If f is ǫ-far from linear, then δ = Prx,y[f(x)f(y)f(x · y) 6= 1] ≥ ǫ.

Proof
We will prove Theorem 10 by proving its contrapositive; we will assume that δ < ǫ, and demonstrate
that this assumption implies that f is ǫ-close.

The Main Lemma implies that

1 − δ ≤
1

2
+

1

2

∑

S

f̂3(S)

1 − 2δ ≤
∑

S

f̂3(S)

≤
(

max
S

f̂(S)
)

∑

S

f̂2(S) = max
S

f̂(S),

Let T = arg max
S

f̂(S). We have

1 − 2δ ≤ f̂(T ),

and by Fact 9,

dist(f, χT ) =
1

2
−

1

2
f̂(T ) <

1

2
−

1

2
(1 − 2δ) = δ < ǫ.

Therefore, f is ǫ-close to a linear function; an impossibility.
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