6.895 Randomness and Computation	February 13, 2008	
Lecture 3		
Lecturer: Ronitt Rubinfeld		Scribe: Megumi Ando

Last Time

In the previous lecture, we made a notational switch from using Boolean functions of the form f : $\{0,1\}^{n} \rightarrow\{0,1\}$ to functions of the form $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. We defined linearity over this form, and what it meant to be ϵ-close to linear.

Definition $1 f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is linear if $\forall x, y \in\{-1,1\}^{n}, f(x) f(y) f(x \cdot y)=1$, where $x \cdot y=\left(x_{1} \ldots x_{n}\right) \cdot\left(y_{1} \ldots y_{n}\right)=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)$.

There are 2^{n} linear functions over $\{-1,1\}^{n} \rightarrow\{-1,1\}$. Each of them can be written as $\chi_{S}(x)=$ $\prod_{i \in S} x_{i}$, where $S \subseteq\{1, \ldots, n\}$.

Definition 2 A function f is ϵ-close to linear if \exists linear g such that $\operatorname{Pr}_{x}[f(x) \neq g(x)] \leq \epsilon$. Otherwise, f is ϵ-far.

Finally, we proposed the following linearity tester:

- Repeat $O\left(\frac{1}{\rho} \log \frac{1}{\beta}\right)$ times:
- Pick $x, y \in\{-1,1\}^{n}$.
- If $f(x) f(y) f(x \cdot y) \neq 1$, output "FAIL" and halt.
- Output "PASS."

The rejection probability of one pass through the loop is $\delta \equiv E_{x, y}\left[\frac{1-f(x) f(y) f(x \cdot y)}{2}\right]$.

1 Fourier Analysis (Basics)

We will use a few times the following simple fact about linear functions.
Fact 3

$$
\chi_{S}(x) \cdot \chi_{T}(x)=\prod_{i \in S} x_{i} \cdot \prod_{j \in R} x_{j}=\prod_{i \in S \triangle T} x_{i}
$$

where $S \triangle T$ is the symmetric difference of S and T, i.e., the set of elements that appear in exactly one of the sets S and T.

1.1 Vector Space of Functions $g:\{-1,1\}^{n} \rightarrow \mathbb{R}$

The set $G=\left\{g \mid g:\{-1,1\}^{n} \rightarrow \mathbb{R}\right\}$ is a vector space of $\operatorname{dim} 2^{n}$.
Definition 4 Indicator functions are functions of the form: If $x=a$, then $e_{a}(x)=1$. Otherwise, $e_{a}(x)=0$.

Note that the indicator functions are basis functions of G. However, we will not be using them. Instead we will be using the parity functions, $\left\{\chi_{S}\right\}_{S \subseteq[n]}$, described in the previous lecture.

Definition 5 For $f, g:\{-1,1\} \rightarrow\{-1,1\}$, the "inner product"

$$
\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} f(x) g(x)
$$

where the sum $\sum f(x) g(x)$ is the "correlation," a measure of how often f and g agree.

Note that:

1. $<\chi_{S}, \chi_{S}>=\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} \chi_{S}^{2}(x)=1$. (Absolute correlation.)
2. If $S \neq T$,

$$
\begin{aligned}
<\chi_{S}, \chi_{T}> & =\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} \chi_{S}(x) \chi_{T}(x) \\
& =\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} \prod_{i \in S} x_{i} \prod_{j \in T} x_{j} \quad \text { (by definition) } \\
& =\frac{1}{2^{n}} \sum \prod_{i \in S \triangle T} x_{i} \quad \text { (by Fact 3) }
\end{aligned}
$$

where $S \triangle T$ is non-empty. Therefore, there exists a $j \in S \triangle T$. Let $x^{\oplus j}$ equals x with the j-th bit flipped.

$$
\begin{aligned}
& =\frac{1}{2^{n}} \sum_{\text {pairs }\left(x, x^{\oplus j}\right)}\left(x_{j} \prod_{i \in S \triangle T \backslash\{j\}} x_{i}+\overline{x_{j}} \prod_{i \in S \triangle T \backslash\{j\}} x_{i}\right) \\
& =0
\end{aligned}
$$

From Notes 1 and 2 above, we see that every parity function X_{S} is normal to the others, and thus, the parity functions form an orthonormal basis.

1.2 Fourier Coefficients

The following corollary follows.
Corollary 6

$$
\forall f, f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}(x)
$$

where $\hat{f}(z)$ is the Fourier coefficient, which can be calculated as follows:

$$
\begin{aligned}
\hat{f}(S) & =\left\langle f, \chi_{S}\right\rangle \\
& =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x)
\end{aligned}
$$

In particular, a parity function has all but one coefficients equal zero.
Fact 7 (Fourier Coefficients of Parity Functions χ_{T})

$$
\begin{aligned}
f=\chi_{T} \Longleftrightarrow & \hat{f}(T)=1 \\
& \text { Furthermore, } \forall S \neq T, \hat{f}(S)=0
\end{aligned}
$$

A few more examples of Fourier coefficients:

Function	Fourier Representation
$f(x)=1$	$1 \cdot \chi_{\emptyset}$
$f(x)=x_{i}$	$1 \cdot \chi_{\{i\}}$
$\operatorname{and}\left(x_{1}, x_{2}\right)$	$\frac{1}{2} \chi_{\emptyset}+\frac{1}{2} \chi_{\{1\}}+\frac{1}{2} \chi_{\{2\}}-\frac{1}{2} \chi_{\{1,2\}}$
$\operatorname{maj}\left(x_{1}, x_{2}, x_{3}\right)$	$\frac{1}{2} \chi_{\{1\}}+\frac{1}{2} \chi_{\{2\}}+\frac{1}{2} \chi_{\{3\}}-\frac{1}{2} \chi_{\{1,2,3\}}$

1.3 Fourier Coefficients and Distance to Linearity

Let $\operatorname{dist}(f, g)$ denote the fraction of inputs on which two Boolean functions $f, g:\{-1,1\}^{n} \rightarrow\{-1,1\}$ disagree. That is, $\operatorname{dist}(f, g)=\operatorname{Pr}_{x \in\{-1,1\}^{n}}[f(x) \neq g(x)]$. For instance, the distance between two different parity functions is $1 / 2$.

Fact 8 For $S \neq T$, $\operatorname{dist}\left(\chi_{S}, \chi_{T}\right)=\frac{1}{2}$.

It turns out that Fourier coefficients can be used to express the distance of a function to a given linear function.

Fact 9 (Agreement of f with Linear Functions) For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$,

$$
\hat{f}(S)=1-2 \operatorname{dist}\left(f_{1}, \chi_{S}\right)
$$

Proof

$$
\begin{aligned}
2^{n} \hat{f}(s) & =\sum_{x} f(x) \chi_{S}(x) \\
& =\sum_{x \text { s.t. } f(x)=\chi_{S}(x)} f(x) \chi_{S}(x)+\sum_{x \text { s.t. } f(x) \neq \chi_{S}(x)} f(x) \chi_{S}(x) \\
& =2^{n}-2\left|\left\{x \mid f(x) \neq \chi_{S}(x)\right\}\right| \\
& =2^{n}\left(1-2 \frac{\left|\left\{x \mid f(x) \neq \chi_{S}(x)\right\}\right|}{2^{n}}\right) \\
\hat{f}(s) & =1-2 \operatorname{dist}\left(f_{1} \cdot \chi_{S}\right)
\end{aligned}
$$

1.4 Plancherel's Theorem

The following simple theorem holds.
Theorem 10 (Plancherel's Theorem) For $f, g:\{-1,1\} \rightarrow \mathbb{R}$,

$$
\langle f, g\rangle=E_{x}[f(x) \cdot g(x)]=\sum_{S \subseteq[n]} \hat{f}(S) \hat{g}(S)
$$

Proof

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\sum_{S} \hat{f}(S) \chi_{S}(x), \sum_{T} \hat{g}(T) \chi_{T}(x)\right\rangle \\
& =\sum_{S} \sum_{T} \hat{f}(S) \hat{g}(T)\left\langle\chi_{S}(x), \chi_{T}(x)\right\rangle \\
& =\sum_{S=T} \hat{f}(S) \hat{g}(T) \cdot 1=\sum_{S} \hat{f}(S) \hat{g}(S)
\end{aligned}
$$

The theorem yields multiple useful properties.
Corollary 11 (Parseval's identity) For $f:\{-1,1\}^{n} \rightarrow R,\langle f, f\rangle=\sum \hat{f}^{2}(S)$.
Corollary 12 For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}, \sum \hat{f}^{2}(S)=\langle f, f\rangle=1$.
Corollary 13

$$
E_{x}\left[\chi_{S}(x)\right]= \begin{cases}1 & \text { if } S=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

2 Analysis of the Proposed Linearity Tester

Recall that δ is the probability that a single pass through the loop detects that the input function f is not linear, and it can be expressed as

$$
\delta=E_{x, y}\left[\frac{1-f(x) f(y) f(x \cdot y)}{2}\right] .
$$

Lemma 14 (Main Lemma) $1-\delta=\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}^{3}(S)$

Proof

$$
\left.\begin{array}{rl}
1-\delta & =E_{x, y}\left[\frac{1+f(x) f(y) f(x y)}{2}\right] \\
& =\frac{1}{2}+\frac{1}{2} E_{x, y}[f(x) f(y) f(x y)] \\
E_{x, y}[f(x) f(y) f(x y)] & =E_{x, y}\left[\left(\sum_{S} \hat{f}(S) \chi_{S}(x)\right)\left(\sum_{T} \hat{f}(T) \chi_{T}(y)\right)\left(\sum_{U} \hat{f}(U) \chi_{U}(x \cdot y)\right]\right. \\
& =\sum_{S, T, U} \hat{f}(S) \hat{f}(T) \hat{f}(U) E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x \cdot y)\right] \\
& =E_{x, y}\left[\prod_{i \in S \triangle U} x_{i} \prod_{j \in T \triangle U} y_{j}\right] \\
E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x \cdot y)\right] & =E_{x, y}\left[\prod_{i \in S} x_{i} \prod_{j \in T} y_{j} \prod_{k \in U} x_{k} y_{k}\right]
\end{array}\right\} \begin{array}{ll}
E_{x}\left[\chi_{S \triangle U}(x)\right] E_{y}\left[\chi_{T \Delta U}(y)\right] \\
E_{x}\left[\chi_{S \Delta U}(x)\right] & = \begin{cases}1 & \text { if } S=U, \\
0, & \text { otherwise }\end{cases} \\
E_{y}\left[\chi_{T \Delta U}(y)\right] & = \begin{cases}1 & \text { if } T=U, \\
0, & \text { otherwise }\end{cases}
\end{array}
$$

So, $E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x \cdot y)\right]$ is non-zero if and only if $S=T=U$. If $S=T=U$, then the expectation is 1 . Hence,

$$
E_{x, y}[f(x) f(y) f(x y)]=\sum_{S, T, U} \hat{f}(S) \hat{f}(T) \hat{f}(U) E_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x \cdot y)\right]=\sum_{S} \hat{f}^{3}(S)
$$

and

$$
1-\delta=\frac{1}{2}+\frac{1}{2} E_{x, y}[f(x) f(y) f(x y)]=\frac{1}{2}+\frac{1}{2} \sum_{S} \hat{f}^{3}(S)
$$

Theorem 15 If f is ϵ-far from linear, then $\delta=\operatorname{Pr}_{x, y}[f(x) f(y) f(x \cdot y) \neq 1] \geq \epsilon$.

Proof

We will prove Theorem 10 by proving its contrapositive; we will assume that $\delta<\epsilon$, and demonstrate that this assumption implies that f is ϵ-close.

The Main Lemma implies that

$$
\begin{aligned}
1-\delta & \leq \frac{1}{2}+\frac{1}{2} \sum_{S} \hat{f}^{3}(S) \\
1-2 \delta & \leq \sum_{S} \hat{f}^{3}(S) \\
& \leq\left(\max _{S} \hat{f}(S)\right) \sum_{S} \hat{f}^{2}(S)=\max _{S} \hat{f}(S)
\end{aligned}
$$

Let $T=\underset{S}{\arg \max } \hat{f}(S)$. We have

$$
1-2 \delta \leq \hat{f}(T)
$$

and by Fact 9 ,

$$
\operatorname{dist}\left(f, \chi_{T}\right)=\frac{1}{2}-\frac{1}{2} \hat{f}(T)<\frac{1}{2}-\frac{1}{2}(1-2 \delta)=\delta<\epsilon
$$

Therefore, f is ϵ-close to a linear function; an impossibility.

