6.895 Randomness and Computation February 13, 2008

Lecture 3
Lecturer: Ronitt Rubinfeld Scribe: Megumi Ando

Last Time

In the previous lecture, we made a notational switch from using Boolean functions of the form f :
{0,1}™ — {0, 1} to functions of the form f : {—1,1}" — {—1,1}. We defined linearity over this form,
and what it meant to be e-close to linear.

Definition 1 f:{-1,1}" — {—1,1} is linear if Vz,y € {—1,1}", f(z)f(y)f(z-y) =1,
where x -y = (21..2,) - (Y1.-Yn) = (T1Y1, T2Y2, .o, Tnln)-

There are 2" linear functions over {—1,1}" — {—1,1}. Each of them can be written as xs(z) =
[licg @i, where S C {1,...,n}.

Definition 2 A function f is e-close to linear if 3 linear g such that Pry[f(z) # g(x)] < e. Otherwise,
f is e-far.

Finally, we proposed the following linearity tester:
e Repeat O (% log %) times:
— Pick z,y € {-1,1}"
—If f(z)f(y)f(z-y) # 1, output “FAIL” and halt.
e Output “PASS.”
The rejection probability of one pass through the loop is 6 = E; [w}

1 Fourier Analysis (Basics)
We will use a few times the following simple fact about linear functions.

Fact 3

xs(@)-xr@@) = [[ai [Tai= I @

i€S JER IESAT

where SAT is the symmetric difference of S and T, i.e., the set of elements that appear in exactly one
of the sets S and T'.

1.1 Vector Space of Functions g: {—1,1}" — R
The set G = {g|lg : {—1,1}" — R} is a vector space of dim 2".

Definition 4 Indicator functions are functions of the form: If x = a, then e,(x) = 1. Otherwise,
eq(x) = 0.

Note that the indicator functions are basis functions of G. However, we will not be using them.
Instead we will be using the parity functions, {Xs}scn], described in the previous lecture.



Definition 5 For f,g: {-1,1} — {—1,1}, the “inner product”
1
o= X Sl
ze{—1,1}n

where the sum Y f(z)g(z) is the “correlation,” a measure of how often f and g agree.

Note that:
1. <Xs,Xs >= 3+ dre{—1,1}n x%(x) = 1. (Absolute correlation.)
2. IS #T,

<XS; XT > = on Z xs(@)xr(z)
ze{-1,1}"

= 2% Z H X H xj (by definition)

ze{-1,1}ni€S jeT

= 2%2 H x; (by Fact 3)

i€ESAT

where SAT is non-empty. Therefore, there exists a j € SAT. Let 297 equals = with the j-th bit flipped.

1 —
= 2_n Z T H T; +7T; H x;
pairs (z,z®4) 1€SAT\{j} 1€SAT\{j}
= 0

From Notes 1 and 2 above, we see that every parity function Xg is normal to the others, and thus, the
parity functions form an orthonormal basis.

1.2 Fourier Coefficients

The following corollary follows.

Corollary 6

vf fla Z
SCln
where f(z) is the Fourier coefficient, which can be calculated as follows:

9 = (fix

s)
1
:_nzo:

In particular, a parity function has all but one coefficients equal zero.

1}n

Fact 7 (Fourier Coefficients of Parity Functions xr)

f=xr < f(I)=1
Furthermore, ¥S # T, f(S) =



A few more examples of Fourier coefficients:

| Function | Fourier Representation |
fla)=1 1-xgp
flz) == 1 xqy
and(z1, T2) 2Xo + Sxq + 3X{2) — 3X{1L2}
maj(21, 2, 3) | X1} T 3X(2} + 3X{3} — 3X{1.2.3}

1.3 Fourier Coefficients and Distance to Linearity

Let dist(f,g) denote the fraction of inputs on which two Boolean functions f,g : {-1,1}" — {-1,1}
disagree. That is, dist(f,g) = Prye;—1,13[f(2) # g()]. For instance, the distance between two different
parity functions is 1/2.

Fact 8 For S # T, dist(xs, xr) = 3.

It turns out that Fourier coefficients can be used to express the distance of a function to a given
linear function.

Fact 9 (Agreement of f with Linear Functions) For f:{-1,1}" — {—1,1},

F(S) = 1 - 2dist(f1, xs)-

Proof
2f(s) = 3 fle)xs(e)

= Z f@)xs(z) + Z f(@)xs(x)
zst. f(z) =xs(x) v st. f(x) # xs(@)

= 2" = 2|{z|f(z) # xs(2)}]

- (-2l £ s

f(s) = 1—2dist(f1-xs)

1.4 Plancherel’s Theorem

The following simple theorem holds.

Theorem 10 (Plancherel’s Theorem) For f,g:{-1,1} = R,

(fr9) = Bulf(2) - g(x)] = Y F(9)3(9).



Proof

<.fvg> = <Zf(S)XS(I)aZg(T)XT(I)>
T

S
= ST (s () xr (@)
S T
= Y 9T - 1= f(5)3(8)
S=T S

The theorem yields multiple useful properties.
Corollary 11 (Parseval’s identity) For f:{—1,1}" — R, (f, f) = 3 f2(5).
Corollary 12 For f: {—1,1}" — {—1,1}, S, f2(S) = (f, f) = 1.
Corollary 13

1 ifS=0,
L, [XS(I)] - { 0, otherwise.

2 Analysis of the Proposed Linearity Tester

Recall that ¢ is the probability that a single pass through the loop detects that the input function f is
not linear, and it can be expressed as

5_Em{1—ﬂ@gmﬂqu.

Lemma 14 (Main Lemma) 1-§= 3+ 3 >-5Cn] £3(9)

Proof

1_5 — Ew7y[1+f(x)f(y)f(xy)}

2

—_

_ % ~ B,y [f (@) f () f (xy)]

[\)

By ylf () f(y) f(xy)]

EeylO F(S)xs@) O F@xr ) fF(U)xu (- y)]
S

T U

= > FOFD)FU)E: ylxs(@)xry)xu (@ - y)]

S, T,U

By ylxs@)xr@)xv(z-y)] = Eocy[H T H Yj H TkYk)

i€S  jET keU

= Epyl H Li H vil

1€SAU JETAU
= Eilxsav(®)|Ey[xrav(y)]

1 ifS=U,
Eylxsav(z)] = { 0, otherwise
1 fT=U,
Eylxrav(y)] = {07 otherwise

4



So, By ylxs(@)xr(W)xu(x - y)] is non-zero if and only it S =T = U. If S = T = U, then the
expectation is 1. Hence,

Ezy[f(x) Z f f f ) zy[XS(x)XT( XU33 y ng )
S,T,U
" 1-6=141p Y
- —5"‘5 x,y[f(x)f(y)f(xy)]—§+§zs:f( )-
|

Theorem 15 If f is e-far from linear, then 6 = Pry ,[f(x)f(y)f(z-y) #1] > €

Proof
We will prove Theorem 10 by proving its contrapositive; we will assume that § < €, and demonstrate
that this assumption implies that f is e-close.

The Main Lemma implies that

15 < L5
g
1-20 < > f%9)
s
< (maxf(9)) gf%g) = max f(S),
Let T = argmax f(S). We have
s
1-26 < f(T),
and by Fact 9,
dist(f,xT)zé %f( ) < ;—%(1—25):6<e.

Therefore, f is e-close to a linear function; an impossibility. ll



