
6.895 Randomness and Computation February 27, 2008

Lecture 07: Learning Halfspaces

Lecturer: Ronitt Rubinfeld Scribe: Ning Xie

1 Review of Last Lecture

Last time we said that a function f : {−1, 1}n → R has α(ǫ, n)-Fourier concentration if

∑

S⊆[n],|S|>α(ǫ,n)

f̂(S)2 ≤ ǫ

for all 0 < ǫ < 1. For functions that have d = α(ǫ, n)-Fourier concentration, we showed the Low
Degree Algorithm for learning such functions: estimate all the low-degree Fourier coefficients (that is,

f̂(S) for all |S| ≤ d) and output the sign of the estimated low-degree polynomial (output hypothesis
sign(

∑
S:|S|≤d CSχS(x)), where CS is the estimated Fourier coefficients). Today we are going to see

further applications of the Low Degree Algorithm in learning theory.

2 Noise Sensitivity

Definition 1 (Linear Threshold Function) A Boolean function h(x) is called a Halfspace Function
(or Linear Threshold Function) if h can be written as h(x) = sign(

∑n
i=1 wixi − θ), where wi are real

numbers called weights and sign(x) is 1 if x ≥ 0 and −1 otherwise.

We are going to see an algorithm that learns halfspaces (under the uniform distribution) with sample

complexity nO(1/ǫ2). There are other learning algorithms with better sample complexity. The advantage
of the algorithm we study is that it can be easily generalized to learn any function that depends on a
constant number of halfspaces. The main tool we are going to use is the Low Degree Algorithm but
combined with a key new idea: noise sensitivity.

Definition 2 (Noise Operator) For any 0 < ǫ < 1/2, define the noise operator Nǫ : {−1, 1}n →
{−1, 1}n such that each bit of Nǫ(x) is obtained by randomly flipping each bit of x independently with
probability ǫ. That is, independently for each 1 ≤ i ≤ n, Pr[Nǫ(x)i = −xi] = ǫ.

Definition 3 (Noise Sensitivity) For any Boolean function f , define its noise sensitivity, denoted by
NSǫ(f), to be

NSǫ(f) = Pr
x,random noise

[f(x) 6= f(Nǫ(x))]

Note that the notion of noise operator is similar to the δ-biased distribution we saw in H̊astad’s test.
One may think H̊astad’s dictator testing algorithm tests both linearity and noise sensitivity at the same
time. An easy fact is, if x is uniform over {−1, 1}n then so is Nǫ(x).

We next see the noise sensitivities of some functions.

Fact 4 (Dictator Function) If f(x) = xi, then NSǫ(f) = ǫ.

Fact 5 (AND Function) If f(x) = x1

∧
· · ·

∧
xk, then NSǫ(f) = 1

2k−1 (1 − (1 − ǫ)k). This is because

NSǫ(f) = Pr[f(x) = −1 and f(Nǫ(x)) = 1] + Pr[f(x) = 1 and f(Nǫ(x)) = −1]

= 2 Pr[f(x) = 1 and f(Nǫ(x)) = −1]

= 2
1

2k
(1 − (1 − ǫ)k).

Note that for k ≪ 1
ǫ , NSǫ(f) ≈ kǫ

2k−1 . If k ≫ 1
ǫ , then NSǫ(f) ≈ 1−e−kǫ

2k−1 .

1

Fact 6 (Majority Function) If f(x) = MAJ(x1, . . . , xn) = sign(x1+ · · ·+xn), then NSǫ(f) = O(
√

ǫ).

Sketch of Proof Here we only give a rough outline of the proof. One may think of computing the
majority of x as a random walk on the real line. The random walk starts from origin and at step i it
flips a fair coin to determine the value of of xi and moves left or right accordingly. After n steps, it stops
and outputs 1 if it ends at some position z ≥ 0 and outputs −1 otherwise. A well-known fact is that
the expected distance from the origin after n unbiased coin-flips is Θ(

√
n). In fact, if c is a sufficiently

small constant, then the probability that the random walk ends at distance from origin ≥ c
√

n is pretty
high. One way of seeing this fact is to consider the weight distribution of vectors in the Boolean cube.
Although

∑
i xi = 0 is the most likely configuration, but there are only Θ(2n

√
n
) vectors at this point. In

fact, almost all vectors are distributed between
∑

i xi = −√
n and

∑
i xi =

√
n.

Now we consider Nǫ(x) as a second random walk starting from the endpoint of the previous walk
(that is, starts from

∑
i xi). This time there are only ǫn coin-flips and each coin-flip outputs 1 and −1

equally likely. Note that since we are “correcting” the previous noiseless random walk, so the step size
of the second walk is 2 and consequently the expected displacement is 2

√
ǫn. Suppose the first random

walk ends at c
√

n for some small constant c. Then by Markov inequality,

Pr[2nd walk leaves us on the other side of origin]

≤ Pr[the displacement of the second walk is larger than c
√

n]

≤ 2
√

ǫn

c
√

n
= O(

√
ǫ).

In fact, it is known that this bound on the noise sensitivity of Majority functions is tight (up to a
constant factor). That is, NSǫ(MAJ) = Θ(

√
ǫ).

Fact 7 (Linear Threshold Function [Peres]) For any linear threshold function LTF,

NSǫ(LTF) ≤ 8.8
√

ǫ.

Fact 8 (Parity Function) If f(x) = χS(x) for some S ⊆ [n], then

NSǫ(f) =
1 − (1 − 2ǫ)|S|

2
.

This fact is a special case of the theorem we are going to prove next.

Theorem 9 For any Boolean function f : {−1, 1}n → {−1, 1},

NSǫ(f) =
1

2
− 1

2

∑

S⊆[n]

(1 − 2ǫ)|S|f̂(S)2.

Proof By the definition of noise sensitivity, we have

NSǫ(f) = Pr
x,y=Nǫ(x)

[f(x) 6= f(y)]

= E[1f(x) 6=f(y)]

= E[
(f(x) − f(y))2

4
] (since f is a Boolean-valued function)

= E[
2 − 2f(x)f(y)

4
]

2

=
1

2
− 1

2
Ex,y[f(x)f(y)]

=
1

2
− 1

2

∑

S,T⊆[n]

f̂(S)f̂(T)Ex,y[χS(x)χT (y)]

=
1

2
− 1

2

∑

S⊆[n]

f̂(S)2Ex,y[χS(x)χS(y)].

Note that since χS(x) and χS(x) take values in {−1, 1}, so if we let exi
(resp. eyi

) denote the unit vector
that has value xi (resp. yi) at position i and 1 at all other places, then

Ex,y[χS(x)χS(y)] = Ex,y[
n∏

i=1

χS(exi
)χS(eyi

)]

= Ex,y[
∏

i∈S

χS(exi
)χS(eyi)]

=
∏

i∈S

Ex,y[χS(exi
)χS(eyi

)]

=
∏

i∈S

(Pr[χS(exi
) = χS(eyi

)] − Pr[χS(exi
) 6= χS(eyi

)])

=
∏

i∈S

(Pr[xi = yi] − Pr[xi 6= yi])

=
∏

i∈S

(1 − 2 NSǫ(xi))

= (1 − 2ǫ)|S|.

This completes the proof of the theorem.

3 Noise Sensitivity vs. Fourier Concentration

The main reason that we study noise sensitivity is the following connection between noise sensitivity
and Fourier concentration for Boolean functions.

Theorem 10 Let f : {−1, 1}n → {−1, 1} be a Boolean function and let 0 < γ < 1/2. Then
∑

|S|≥1/γ

f̂(S)2 < 2.32 NSγ(f).

Proof

2 NSγ(f) = 1 −
∑

S⊆[n]

(1 − 2γ)|S|f̂(S)2

=
∑

S⊆[n]

f̂(S)2 −
∑

S⊆[n]

(1 − 2γ)|S|f̂(S)2

=
∑

S⊆[n]

(1 − (1 − 2γ)|S|)f̂(S)2

≥
∑

|S|≥1/γ

(1 − (1 − 2γ)1/γ)f̂(S)2

≥
∑

|S|≥1/γ

(1 − e−2)f̂(S)2.

3

Finally by numerical calculation, 2
1−e−2 < 2.32.

The following is a simple corollary of Theorem 10 which says that a Boolean function f has small
Fourier concentration if there is a good upper bound on the noise sensitivity of f .

Corollary 11 Let f : {−1, 1}n → {−1, 1} be a Boolean function and β : [0, 1/2] → [0, 1/2] be a real-
valued function such that NSγ(f) ≤ β(γ), then

∑

|S|≥(β−1(ǫ

2.32
))

−1

f̂(S)2 ≤ ǫ,

where β−1 is the inverse function for function β.

4 Application: Learning Halfspaces and Intersections of Halfs-

paces

Now it is easy to see the following corollary by combining Fact 7 and Corollary 11:

Corollary 12 If f : {−1, 1}n → {−1, 1} is a halfspace function, then

∑

|S|≥O(1

ǫ2
)

f̂(S)2 ≤ ǫ.

Therefore, by applying the Low Degree Algorithm to f , we see that halfspace functions can be learned

with nO(1

ǫ2
) samples under the uniform distribution.

Note that the Fourier concentration bound of halfspace functions in Corollary 12 can be easily gener-
alized to arbitrary functions that depend on k halfspace functions by upper bound the noise sensitivity
of such functions. Let h1, . . . , hk by k arbitrary halfspace functions. Let g : {−1, 1}k → {−1, 1} be any
Boolean functions defined on k variables. Define f(x) = g(h1(x), . . . , hk(x)). Then we have the following
upper bound on the noise sensitivity of f .

Theorem 13
NSǫ(f) ≤ 8.8k

√
ǫ.

Proof

NSǫ(f) = Pr[g(h1(x), . . . , hk(x)) 6= g(h1(Nǫ(x)), . . . , hk(Nǫ(x)))]

≤
k∑

i=1

Pr[hi(x) 6= hi(Nǫ(x))] (By union bound)

≤ k · 8.8
√

ǫ. (By Fact 7)

Applying the Low Degree Algorithm again, we conclude that any function that depends on k halfspace

functions can be learned with nO(k
2

ǫ2
) samples under the uniform distribution.

4

