6.895 Randomness and Computation February 27, 2008

Lecture 07: Learning Halfspaces
Lecturer: Ronitt Rubinfeld Scribe: Ning Xie

1 Review of Last Lecture

Last time we said that a function f: {—1,1}" — R has a(e, n)-Fourier concentration if

> f8)?<e

SC[n],|S[>a(en)

for all 0 < € < 1. For functions that have d = (e, n)-Fourier concentration, we showed the Low
Degree Algorithm for learning such functions: estimate all the low-degree Fourier coefficients (that is,
F(S) for all |S| < d) and output the sign of the estimated low-degree polynomial (output hypothesis
sign(Z&'S'Sd Csxs(z)), where Cg is the estimated Fourier coefficients). Today we are going to see

further applications of the Low Degree Algorithm in learning theory.

2 Noise Sensitivity

Definition 1 (Linear Threshold Function) A Boolean function h(zx) is called a Halfspace Function
(or Linear Threshold Function) if h can be written as h(x) = sign(>__, w;x; — 0), where w; are real
numbers called weights and sign(x) is 1 if x > 0 and —1 otherwise.

We are going to see an algorithm that learns halfspaces (under the uniform distribution) with sample
complexity n©(1/ ). There are other learning algorithms with better sample complexity. The advantage
of the algorithm we study is that it can be easily generalized to learn any function that depends on a
constant number of halfspaces. The main tool we are going to use is the Low Degree Algorithm but

combined with a key new idea: noise sensitivity.

Definition 2 (Noise Operator) For any 0 < € < 1/2, define the noise operator N : {—1,1}" —
{—1,1}" such that each bit of N.(x) is obtained by randomly flipping each bit of x independently with
probability €. That is, independently for each 1 <i <n, Pr[Ne(x); = —x;] = €.

Definition 3 (Noise Sensitivity) For any Boolean function f, define its noise sensitivity, denoted by
NSc(f), to be

NSe(f) = Pr [f(z) # f(Ne(z))]

z,random noise

Note that the notion of noise operator is similar to the J§-biased distribution we saw in Hastad’s test.
One may think Hastad’s dictator testing algorithm tests both linearity and noise sensitivity at the same
time. An easy fact is, if = is uniform over {—1,1}" then so is N¢(z).

We next see the noise sensitivities of some functions.

Fact 4 (Dictator Function) If f(z) = x;, then NS.(f) =e.
Fact 5 (AND Function) If f(z) = 1 \--- Awi, then NS.(f) = 7= (1 — (1 — €)F). This is because

NSc(f) = Pr[f(z) = =1 and f(N(2)) = 1]+ Pr[f(z) = 1 and f(Ne(z)) = 1]
=2Pr[f(x) =1 and f(Nc(z)) = —1]

La—a-om.

Note that for k< 1, NS.(f) ~ £ If k> L, then NS.(f) ~ L5t



Fact 6 (Majority Function) If f(z) = MAJ(z1,...,x,) = sign(zi+---+x,), then NS (f) = O(/e).

Sketch of Proof Here we only give a rough outline of the proof. One may think of computing the
majority of z as a random walk on the real line. The random walk starts from origin and at step i it
flips a fair coin to determine the value of of z; and moves left or right accordingly. After n steps, it stops
and outputs 1 if it ends at some position z > 0 and outputs —1 otherwise. A well-known fact is that
the expected distance from the origin after n unbiased coin-flips is ©(y/n). In fact, if ¢ is a sufficiently
small constant, then the probability that the random walk ends at distance from origin > ¢y/n is pretty
high. One way of seeing this fact is to consider the weight distribution of vectors in the Boolean cube.
Although ), x; = 0 is the most likely configuration, but there are only 6)(\2/—7%) vectors at this point. In
fact, almost all vectors are distributed between Y, x; = —y/n and ), z; = \/n.

Now we consider N¢(z) as a second random walk starting from the endpoint of the previous walk
(that is, starts from ), ;). This time there are only en coin-flips and each coin-flip outputs 1 and —1
equally likely. Note that since we are “correcting” the previous noiseless random walk, so the step size
of the second walk is 2 and consequently the expected displacement is 2+/en. Suppose the first random
walk ends at c¢\/n for some small constant ¢. Then by Markov inequality,

Pr[2nd walk leaves us on the other side of origin]

< Pr[the displacement of the second walk is larger than cy/n|

22 o)

<

In fact, it is known that this bound on the noise sensitivity of Majority functions is tight (up to a
constant factor). That is, NS.(MAJ) = O(/e).

Fact 7 (Linear Threshold Function [Peres]) For any linear threshold function LTF,
NS (LTF) < 8.8V/e.
Fact 8 (Parity Function) If f(z) = xs(x) for some S C [n], then

_1-(a- 2¢) 5!

NS.(f) -

This fact is a special case of the theorem we are going to prove next.

Theorem 9 For any Boolean function f:{-1,1}" — {-1,1},

NS.(f) =3 -3 3 (1208 f(s)”
SCln)

Proof By the definition of noise sensitivity, we have

NS(f) = Pr [f(x) # f(y)]

z,y=Ne(z)

=E[1f()25(y)]
(f(x) = f(y)?

=EJ[ 1 ] (since f is a Boolean-valued function)
2-2f(x
_g2=¥ i )f (y)]



Eoylf (@) f(y)]

F(S) F(T)Eq y[xs(@)xr(y)]
]

S, 1rcC
=373 3 S Bl )

Note that since xs(z) and xs(x) take values in {—1,1}, so if we let e,, (resp. e,,) denote the unit vector
that has value x; (resp. y;) at position ¢ and 1 at all other places, then

Eoy[xs(@)xs ()] = Ea.y l_IIXS ex,)Xs(ey,)]
- Ez,y[hg Xs(ex,)xs(ey,)]
= gEjy[XS(ezi)XS(eyi)]
= hS(Pr[Xs(em) = xs(ey,)] — Prxs(es;) # xs(ey,)])
= ﬁs Prlz — Prlz; # yi])
= ﬁ(l — 2NSc(z;))
= 1(615— 2¢)!51.

This completes the proof of the theorem. H

3 Noise Sensitivity vs. Fourier Concentration

The main reason that we study noise sensitivity is the following connection between noise sensitivity
and Fourier concentration for Boolean functions.

Theorem 10 Let f:{—1,1}" — {—1,1} be a Boolean function and let 0 <~y < 1/2. Then
> f(8)* < 2.32NS,(f).

[S|>1/~
Proof
2NS,(f) =1- ( SIF(S)
SC[n]
= F92 = >« )ISIF(S)
SC[n] SCln]

SCn]

> (1= (1=29)"")f(5)?
[S|>1/~

> (1—e?)f(S)?
[S|>1/~



Finally by numerical calculation, % <232. 1

The following is a simple corollary of Theorem 10 which says that a Boolean function f has small
Fourier concentration if there is a good upper bound on the noise sensitivity of f.

Corollary 11 Let f : {—1,1}" — {—1,1} be a Boolean function and 3 :[0,1/2] — [0,1/2] be a real-
valued function such that NS, (f) < B(v), then

> F(8)? <,

1S1>(6-1(552)) "

where 31 is the inverse function for function (3.

4 Application: Learning Halfspaces and Intersections of Halfs-
paces

Now it is easy to see the following corollary by combining Fact 7 and Corollary 11:

Corollary 12 If f: {—1,1}" — {—1, 1} is a halfspace function, then

> f(8)’<e

151>0(%)

Therefore, by applying the Low Degree Algorithm to f, we see that halfspace functions can be learned
1
with n°2) samples under the uniform distribution.

Note that the Fourier concentration bound of halfspace functions in Corollary 12 can be easily gener-
alized to arbitrary functions that depend on k halfspace functions by upper bound the noise sensitivity
of such functions. Let hy,...,h; by k arbitrary halfspace functions. Let g : {—1,1}¥ — {—1,1} be any
Boolean functions defined on k variables. Define f(z) = g(h1(x),. .., hg(z)). Then we have the following
upper bound on the noise sensitivity of f.

Theorem 13
NS (f) < 8.8ky/e.
Proof
NSe(f) = Prlg(hi(z),. .., hn(z)) # g(h1(Ne(2)), . .., he(Ne(x)))]
< Zk: Prlhi(z) # hi(N.(z))] (By union bound)
< 11:-18.8\/8 (By Fact 7)
|

Applying the Low Degree Algorithm again, we conclude that any function that depends on k halfspace

O(

2
functions can be learned with n°(:) samples under the uniform distribution.



