6.895 Randomness and Computation

February 27, 2008

Lecture 07: Learning Halfspaces

Lecturer: Ronitt Rubinfeld

Scribe: Ning Xie

1 Review of Last Lecture

Last time we said that a function $f: \{-1, 1\}^n \to \mathbb{R}$ has $\alpha(\epsilon, n)$ -Fourier concentration if

$$\sum_{S\subseteq [n], |S| > \alpha(\epsilon, n)} \widehat{f}(S)^2 \leq \epsilon$$

for all $0 < \epsilon < 1$. For functions that have $d = \alpha(\epsilon, n)$ -Fourier concentration, we showed the *Low Degree Algorithm* for learning such functions: estimate all the low-degree Fourier coefficients (that is, $\hat{f}(S)$ for all $|S| \leq d$) and output the sign of the estimated low-degree polynomial (output hypothesis $\operatorname{sign}(\sum_{S:|S|\leq d} C_S\chi_S(x))$), where C_S is the estimated Fourier coefficients). Today we are going to see further applications of the Low Degree Algorithm in learning theory.

2 Noise Sensitivity

Definition 1 (Linear Threshold Function) A Boolean function h(x) is called a Halfspace Function (or Linear Threshold Function) if h can be written as $h(x) = \text{sign}(\sum_{i=1}^{n} w_i x_i - \theta)$, where w_i are real numbers called weights and sign(x) is 1 if $x \ge 0$ and -1 otherwise.

We are going to see an algorithm that learns halfspaces (under the uniform distribution) with sample complexity $n^{O(1/\epsilon^2)}$. There are other learning algorithms with better sample complexity. The advantage of the algorithm we study is that it can be easily generalized to learn any function that depends on a constant number of halfspaces. The main tool we are going to use is the Low Degree Algorithm but combined with a key new idea: noise sensitivity.

Definition 2 (Noise Operator) For any $0 < \epsilon < 1/2$, define the noise operator $N_{\epsilon} : \{-1,1\}^n \rightarrow \{-1,1\}^n$ such that each bit of $N_{\epsilon}(x)$ is obtained by randomly flipping each bit of x independently with probability ϵ . That is, independently for each $1 \le i \le n$, $\Pr[N_{\epsilon}(x)_i = -x_i] = \epsilon$.

Definition 3 (Noise Sensitivity) For any Boolean function f, define its noise sensitivity, denoted by $NS_{\epsilon}(f)$, to be

$$NS_{\epsilon}(f) = \Pr_{x, random noise}[f(x) \neq f(N_{\epsilon}(x))]$$

Note that the notion of noise operator is similar to the δ -biased distribution we saw in Håstad's test. One may think Håstad's dictator testing algorithm tests both linearity and noise sensitivity at the same time. An easy fact is, if x is uniform over $\{-1, 1\}^n$ then so is $N_{\epsilon}(x)$.

We next see the noise sensitivities of some functions.

Fact 4 (Dictator Function) If $f(x) = x_i$, then $NS_{\epsilon}(f) = \epsilon$.

Fact 5 (AND Function) If $f(x) = x_1 \wedge \cdots \wedge x_k$, then $NS_{\epsilon}(f) = \frac{1}{2^{k-1}}(1-(1-\epsilon)^k)$. This is because

$$NS_{\epsilon}(f) = \Pr[f(x) = -1 \text{ and } f(N_{\epsilon}(x)) = 1] + \Pr[f(x) = 1 \text{ and } f(N_{\epsilon}(x)) = -1]$$

= 2 \Pr[f(x) = 1 and f(N_{\epsilon}(x)) = -1]
= 2 \frac{1}{2^{k}} (1 - (1 - \epsilon)^{k}).

Note that for $k \ll \frac{1}{\epsilon}$, $\operatorname{NS}_{\epsilon}(f) \approx \frac{k\epsilon}{2^{k-1}}$. If $k \gg \frac{1}{\epsilon}$, then $\operatorname{NS}_{\epsilon}(f) \approx \frac{1-e^{-k\epsilon}}{2^{k-1}}$.

Fact 6 (Majority Function) If $f(x) = MAJ(x_1, ..., x_n) = sign(x_1 + \cdots + x_n)$, then $NS_{\epsilon}(f) = O(\sqrt{\epsilon})$.

Sketch of Proof Here we only give a rough outline of the proof. One may think of computing the majority of x as a random walk on the real line. The random walk starts from origin and at step i it flips a fair coin to determine the value of of x_i and moves left or right accordingly. After n steps, it stops and outputs 1 if it ends at some position $z \ge 0$ and outputs -1 otherwise. A well-known fact is that the expected distance from the origin after n unbiased coin-flips is $\Theta(\sqrt{n})$. In fact, if c is a sufficiently small constant, then the probability that the random walk ends at distance from origin $\ge c\sqrt{n}$ is pretty high. One way of seeing this fact is to consider the weight distribution of vectors in the Boolean cube. Although $\sum_i x_i = 0$ is the most likely configuration, but there are only $\Theta(\frac{2^n}{\sqrt{n}})$ vectors at this point. In fact, almost all vectors are distributed between $\sum_i x_i = -\sqrt{n}$ and $\sum_i x_i = \sqrt{n}$.

Now we consider $N_{\epsilon}(x)$ as a second random walk starting from the endpoint of the previous walk (that is, starts from $\sum_{i} x_{i}$). This time there are only ϵn coin-flips and each coin-flip outputs 1 and -1 equally likely. Note that since we are "correcting" the previous noiseless random walk, so the step size of the second walk is 2 and consequently the expected displacement is $2\sqrt{\epsilon n}$. Suppose the first random walk ends at $c\sqrt{n}$ for some small constant c. Then by Markov inequality,

Pr[2nd walk leaves us on the other side of origin]

$$\leq \Pr[\text{the displacement of the second walk is larger than } c\sqrt{n}]$$

 $\leq \frac{2\sqrt{\epsilon n}}{c\sqrt{n}} = O(\sqrt{\epsilon}).$

In fact, it is known that this bound on the noise sensitivity of Majority functions is tight (up to a constant factor). That is, $NS_{\epsilon}(MAJ) = \Theta(\sqrt{\epsilon})$.

Fact 7 (Linear Threshold Function [Peres]) For any linear threshold function LTF,

$$NS_{\epsilon}(LTF) \leq 8.8\sqrt{\epsilon}.$$

Fact 8 (Parity Function) If $f(x) = \chi_S(x)$ for some $S \subseteq [n]$, then

$$NS_{\epsilon}(f) = \frac{1 - (1 - 2\epsilon)^{|S|}}{2}.$$

This fact is a special case of the theorem we are going to prove next.

Theorem 9 For any Boolean function $f : \{-1, 1\}^n \to \{-1, 1\}$,

$$NS_{\epsilon}(f) = \frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} (1 - 2\epsilon)^{|S|} \hat{f}(S)^2.$$

Proof By the definition of noise sensitivity, we have

$$\begin{split} \mathrm{NS}_{\epsilon}(f) &= \Pr_{\substack{x, y = N_{\epsilon}(x)}} [f(x) \neq f(y)] \\ &= \mathbb{E}[\mathbf{1}_{f(x) \neq f(y)}] \\ &= \mathbb{E}[\frac{(f(x) - f(y))^2}{4}] \quad (\text{since } f \text{ is a Boolean-valued function}) \\ &= \mathbb{E}[\frac{2 - 2f(x)f(y)}{4}] \end{split}$$

$$= \frac{1}{2} - \frac{1}{2} \mathbb{E}_{x,y}[f(x)f(y)]$$

= $\frac{1}{2} - \frac{1}{2} \sum_{S,T \subseteq [n]} \hat{f}(S)\hat{f}(T)\mathbb{E}_{x,y}[\chi_S(x)\chi_T(y)]$
= $\frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^2 \mathbb{E}_{x,y}[\chi_S(x)\chi_S(y)].$

Note that since $\chi_S(x)$ and $\chi_S(x)$ take values in $\{-1, 1\}$, so if we let e_{x_i} (resp. e_{y_i}) denote the unit vector that has value x_i (resp. y_i) at position i and 1 at all other places, then

$$\begin{split} \mathbb{E}_{x,y}[\chi_S(x)\chi_S(y)] &= \mathbb{E}_{x,y}[\prod_{i=1}^n \chi_S(e_{x_i})\chi_S(e_{y_i})] \\ &= \mathbb{E}_{x,y}[\prod_{i\in S} \chi_S(e_{x_i})\chi_S(e_{y_i})] \\ &= \prod_{i\in S} \mathbb{E}_{x,y}[\chi_S(e_{x_i})\chi_S(e_{y_i})] \\ &= \prod_{i\in S} (\Pr[\chi_S(e_{x_i}) = \chi_S(e_{y_i})] - \Pr[\chi_S(e_{x_i}) \neq \chi_S(e_{y_i})]) \\ &= \prod_{i\in S} (\Pr[x_i = y_i] - \Pr[x_i \neq y_i]) \\ &= \prod_{i\in S} (1 - 2\operatorname{NS}_{\epsilon}(x_i)) \\ &= (1 - 2\epsilon)^{|S|}. \end{split}$$

This completes the proof of the theorem. \blacksquare

3 Noise Sensitivity vs. Fourier Concentration

The main reason that we study noise sensitivity is the following connection between noise sensitivity and Fourier concentration for Boolean functions.

Theorem 10 Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function and let $0 < \gamma < 1/2$. Then

$$\sum_{|S| \ge 1/\gamma} \hat{f}(S)^2 < 2.32 \operatorname{NS}_{\gamma}(f).$$

Proof

$$\begin{split} 2 \operatorname{NS}_{\gamma}(f) &= 1 - \sum_{S \subseteq [n]} (1 - 2\gamma)^{|S|} \widehat{f}(S)^2 \\ &= \sum_{S \subseteq [n]} \widehat{f}(S)^2 - \sum_{S \subseteq [n]} (1 - 2\gamma)^{|S|} \widehat{f}(S)^2 \\ &= \sum_{S \subseteq [n]} (1 - (1 - 2\gamma)^{|S|}) \widehat{f}(S)^2 \\ &\geq \sum_{|S| \ge 1/\gamma} (1 - (1 - 2\gamma)^{1/\gamma}) \widehat{f}(S)^2 \\ &\geq \sum_{|S| \ge 1/\gamma} (1 - e^{-2}) \widehat{f}(S)^2. \end{split}$$

Finally by numerical calculation, $\frac{2}{1-e^{-2}} < 2.32$.

The following is a simple corollary of Theorem 10 which says that a Boolean function f has small Fourier concentration if there is a good upper bound on the noise sensitivity of f.

Corollary 11 Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function and $\beta : [0,1/2] \to [0,1/2]$ be a realvalued function such that $NS_{\gamma}(f) \leq \beta(\gamma)$, then

$$\sum_{|S| \ge \left(\beta^{-1}\left(\frac{\epsilon}{2\cdot 32}\right)\right)^{-1}} \hat{f}(S)^2 \le \epsilon$$

where β^{-1} is the inverse function for function β .

4 Application: Learning Halfspaces and Intersections of Halfspaces

Now it is easy to see the following corollary by combining Fact 7 and Corollary 11:

Corollary 12 If $f : \{-1, 1\}^n \to \{-1, 1\}$ is a halfspace function, then

$$\sum_{|S| \ge O(\frac{1}{\epsilon^2})} \hat{f}(S)^2 \le \epsilon$$

Therefore, by applying the Low Degree Algorithm to f, we see that halfspace functions can be learned with $n^{O(\frac{1}{\epsilon^2})}$ samples under the uniform distribution.

Note that the Fourier concentration bound of halfspace functions in Corollary 12 can be easily generalized to arbitrary functions that depend on k halfspace functions by upper bound the noise sensitivity of such functions. Let h_1, \ldots, h_k by k arbitrary halfspace functions. Let $g : \{-1, 1\}^k \to \{-1, 1\}$ be any Boolean functions defined on k variables. Define $f(x) = g(h_1(x), \ldots, h_k(x))$. Then we have the following upper bound on the noise sensitivity of f.

Theorem 13

 $NS_{\epsilon}(f) \leq 8.8k\sqrt{\epsilon}.$

Proof

$$NS_{\epsilon}(f) = \Pr[g(h_1(x), \dots, h_k(x)) \neq g(h_1(N_{\epsilon}(x)), \dots, h_k(N_{\epsilon}(x)))$$
$$\leq \sum_{i=1}^k \Pr[h_i(x) \neq h_i(N_{\epsilon}(x))] \quad (By \text{ union bound})$$
$$\leq k \cdot 8.8\sqrt{\epsilon}. \quad (By \text{ Fact 7})$$

Applying the Low Degree Algorithm again, we conclude that any function that depends on k halfspace functions can be learned with $n^{O(\frac{k^2}{\epsilon^2})}$ samples under the uniform distribution.