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ture 8Le
turer: Ronitt Rubinfeld S
ribe: Aleksander M¡dryToday we visit one of the fundamental problems in Computational Learning Theory: learning par-ity/linear fun
tions in the presen
e of noise. In fa
t, the importan
e of this problems has been alsore
ognized in many related �elds like Coding Theory, Fourier Analysis, and even Cryptography (e.g.there is 
onne
tion of the hardness of learning noisy parity fun
tion to the hardness of 
ertain latti
eproblems).1 The modelWe assume that there is a bla
k box Bf whi
h 
ontains a 
ir
uit 
omputing some parity fun
tion
f : {0, 1}n → {0, 1}. However, we do not have dire
t a

ess to Bf . Instead, we 
an get some (noisy)samples 〈x1, ℓ1〉, . . . 〈xm, ℓm〉, su
h that xm ∈U {0, 1}n and ℓi is a noisy value of f(xi), where the natureof the noise i.e. 
onne
tion between f(xi) and ℓi is to be spe
i�ed.2 No noiseClearly, if ℓi = f(xi) for all i, then there is no noise at all�this model 
orrespond to the 
anoni
allearning model that was des
ribed in previous le
tures. In this 
ase, we 
an easily learn f using O(n)samples in polynomial time. We a
hieve this, by taking n samples 〈x1, f(x1)〉, . . . , 〈xn, f(xn)〉, where all
xi are linearly independent (it 
an be shown that after taking O(n) samples we will �nd su
h linearlyindependent subset with very high probability) and solving (e.g. by Gaussian elimination) the followinglinear system:
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,where x
j
i denotes j-th bit of xi. Note that if y∗ ∈ {0, 1}n is a solution to this system then yi

∗ = 1 i�
f 
ontains xi in its de�nition i.e. f(x) =

⊕

i,yi
∗
=1 xi. So, we see that learning the parity fun
tion whenthere is no noise is almost trivial.3 Arbitrary noiseWhat happens if we let the noise to be arbitrary ? More pre
isely, what if we assume that we 
an getonly samples 〈x1, f̃(x1)〉, . . . 〈xm, f̃(xm)〉, where xi ∈U {0, 1}n and f̃ is a fun
tion whi
h is only δ-
loseto f ? Clearly, now the task of learning f 
an be understood as �nding a linear fun
tion f ′ that is 
losestto f̃ . This setting is often referred to in the literature as agnosti
 learning of linear/parity fun
tions,and, sin
e the f̃ 
an be adversarially 
hosen, it is thought to be the hardest of models 
onsidered inlearning.So, how hard 
an the problem of agnosti
 learning of parity fun
tions be? By the ma
hinery that wehave already developed, we know that this problem 
orresponds to �nding the largest Fourier 
oe�
ientof f̃ . And the latter problem is known to be NP-hard. Thus, we are not hoping to obtain a polynomial-time algorithm for this task. We see that this is a signi�
ant di�eren
e 
ompared to the noiseless 
ase.
1



4 Random noiseDis
ouraged by the NP-hardness of the 
ase of arbitrary noise, we 
an try to relax our problem. Namely,we 
onsider the model in whi
h the noise is random i.e. we have a

ess to samples 〈x1, ℓ1〉, . . . , 〈xm, ℓm〉where independently for ea
h i, xi ∈U {0, 1}n and ℓi is equal to f(xi) with probability 1 − η > 1
2 . Thiskind of model is often referred to in the literature as learning under 
lassi�
ation noise.Now, it is natural to ask whether parity learning is signi�
antly easier in this model. Somewhatsurprisingly, the answer is 'no'. A re
ent result of Feldman et al. [FGKP06℄ shows that the problem ofagnosti
 learning 
an be redu
ed to the random noise model. Therefore, on
e again we do not hope fora polynomial-time algorithm.But still one question remains: 
an we do better than 2O(n) time that is a
hievable by just brute-for
e
he
king all possible linear fun
tions and estimating the distan
e, by taking enough samples to over
omethe e�e
t of noise ?A positive answer i.e. a slightly sub-exponential, 2O( n

log n
) algorithm was given by Blum, Kalai,Wasserman [BKW03℄ and, despite being unimpressive at the �rst sight, it was used to establish manyimportant results.5 Blum-Kalai-Wasserman algorithmTheorem 1 If η < 1

2 , we 
an learn under 
lassi�
ation noise parity fun
tion on k inputs in time
2O( k

log k
).ProofWe start the proof of the theorem by establishing the following lemmaLemma 2 (Noise lemma) Consider a set of samples 〈x1, ℓ1〉, . . . , 〈xm, ℓm〉 
orresponding to the noiserate η. Then Pr[

∑m

i=1 ℓi = f(
∑m

i=1 xi)] = 1
2 + 1

2 (1 − 2η)m.Proof of Lemma 2 We prove the lemma by indu
tion on m. If m = 1, then the 
laim trivially holds.So, let us assume that the 
laim holds for m − 1, we will show that it then holds for m. By de�nitionand linearity of f , we have Pr[
∑m

i=1 ℓi = f(
∑m

i=1 xi)] = Pr[
∑m

i=1 ℓi =
∑m

i=1 f(xi)] = Pr[ℓm = f(xm) ∧
∑m−1

i=1 ℓi =
∑m−1

i=1 f(xi)]+Pr[ℓm 6= f(xm)∧
∑m−1

i=1 ℓi 6=
∑m−1

i=1 f(xi)]. Now, by noting the fa
t that noisein ea
h sample is independent and using the indu
tive hypothesis, we get Pr[
∑m

i=1 ℓi = f(
∑m

i=1 xi)] =

Pr[ℓm = f(xm)] · Pr[
∑m−1

i=1 ℓi =
∑m−1

i=1 f(xi)] + Pr[ℓm 6= f(xm)] · Pr[
∑m−1

i=1 ℓi 6=
∑m−1

i=1 f(xi)] =
(1 − η)(1

2 + 1
2 (1 − 2η)m−1) + η(1 − 1

2 − 1
2 (1 − 2η)m−1) = 1

2 + 1
2 (1 − 2η)m.Hen
e, we see that the sum ∑m

i=1 ℓi has a bias toward the 
orre
t value of f(
∑m

i=1 xi). However,this bias vanishes exponentially with the size of the sample set. Therefore, we will need to take a lot ofsamples in order to amplify this bias to required value.To show how exa
tly it will be done, we introdu
e the following de�nitions. Let a = 1
2 log k and

b = 2k
log k

. Clearly, we have ab = k, so these numbers 
orrespond to a division of k-bit string into a blo
ksof length b ea
h.De�nition 3 Let Vi ⊆ {0, 1}k denote a subspa
e 
orresponding to the bitstrings with last i blo
ks equalto 0 i.e. x ∈ Vi if and only if xj = 0 for j > n − i · a.Moreover, by an i-sample of size m we mean a set of m elements of Vi drawn independently withuniform distribution from Vi.We now state and prove the following lemma.2



Lemma 4 (Progress lemma) Given i-sample Si of size m, x1, . . . , xm, we 
an 
onstru
t in time
O(m log m) an (i + 1)-sample Si+1 of size ≥ m − 2b su
h that ea
h element of Si+1 is a sum of twove
tors from Si.Proof of Lemma Let us partition the elements of Si into (at most 2b) 
lasses 
orresponding topossible bit 
on�guration in (a − i)-th blo
k of bits. Note that by de�nition of Si all blo
ks after the
(a− i)-th one are already zeroed out. Now, in ea
h 
lass we pi
k an arbitrary element, subtra
t it fromall the other elements in the 
lass and throw it away. Next, we take all the remaining elements (after thesubtra
tion) as Si+1. Clearly, this operation 
an be performed in O(m log m) time and we have thrownaway at most 2b elements from Si (one for ea
h 
lass). By 
onstru
tion, ea
h element of Si+1 is a sum oftwo ve
tors from Si and, sin
e these two ve
tors have the same bit 
on�guration in the (a− i)-th blo
k,the resulting element of Si+1 is from Vi+1. Finally, sin
e we have thrown away the elements that wewere subtra
ting, the distribution of elements of Si+1 is uniform on Vi+1 with all elements independentof ea
h other. So, Si+1 is an (i + 1)-sample of size at least m − 2b.It is easy to obtain 0-sample of size m�we simply take m noisy samples and form the set S0. Now,if we take m = a× 2b samples, the Progress Lemma allows us to obtain an a− 1-sample Sa−1 of size 2b.The probability that Sa−1 
ontains a basis ve
tor (1, 0, . . . , 0) is at least 1− (1− 1

2b )2
b

≥ 1−e−1, be
ause
Sa−1 has uniform distribution on Va−1 and |Va−1| = 2b. So, after repeating the pro
edure su�
ientlymany times ( 1

1−e−1 in expe
tation), we will have (1, 0, . . . , 0) as a 
ombination of 2a−1 elements of S0. ByNoise Lemma, we know that with probability 1
2 + 1

2 (1− 2η)2
a−1 this 
ombination gives the 
orre
t valueof f((1, 0, . . . , 0)). So, after repeating the whole pro
edure poly(( 1

1−2η
)2

a

) times, Hoe�ding inequalityasserts that the majority vote on the obtained values of the 
ombination gives the 
orre
t answer, i.e.the value of f((1, 0, . . . , 0)), with very high probability.Finally, using the above approa
h to obtain reliable values of f on the remaining k− 1 basis ve
tors,we 
an use the pro
edure employed for the noiseless 
ase to obtain f .Clearly, the running time of the whole algorithm is poly(( 1
1−2η

)2
a

, a, 2b) = poly((1−2η)
√

k, log k, 2
2k

log k ) =

2O( k

log k
).6 Noisy parity when we are allowed to make queriesAs we have seen in the previous paragraphs, if getting sets of noisy samples of f is all that we 
an do,obtaining even slightly sub-exponential algorithm was non-trivial. However, if we strengthen our modelto allow bla
k-box queries, i.e. ask about a (noisy) value of some parti
ular xi, then the 
omplexity ofthe problem 
hanges dramati
ally.This is easy to noti
e in the 
ase of random noise. We 
an obtain reliable values of f on a basisve
tor v by just querying the fun
tion for su�
iently many pairs x and x + v, poly( 1

η
, log n) times, andby observing the probability if adding v �ips the value of the fun
tion.What is however a bit more surprising is that making queries allows us to learn parity fun
tion also inagnosti
 model. This result, due to Kushilevitz and Mansour [KM91℄, is another fundamental algorithmwith many appli
ations outside Learning Theory. Today we will start des
ribing it.7 Kushilevitz-Mansour algorithmThe algorithm takes as an input a bla
k box 
omputing f , and parameter θ > 0 (where f is somearbitrary fun
tion) and returns a set O of linear fun
tions su
h that:3



• if for some S ⊆ [n], |f̂(S)| > θ then χS ∈ O (i.e. we output all linear fun
tions that are 
lose to f)
• if some χS ∈ O then |f̂(S)| > θ

2 (i.e. we output not too mu
h junk)As we 
an see this setting slightly generalizes the agnosti
 learning in the form presented before.The algorithm approa
hes the problem by examining a de
ision tree being a 
omplete binary tree ofheight n, whose i-th level 
orresponds to all 2i sets S ⊆ [i]. Sin
e the size of the tree is exponential,the algorithm must use a very good pruning te
hnique whi
h, after starting from the root, allows it toexplore only these subtrees that promise to 
ontain leaves 
orresponding to the sets S ⊆ [n] with large
|f̂(S)|.More pre
isely, if the algorithm is 
urrently exploring k-th level of the tree and S1 ⊆ [k] is the 
urrentlypro
essed node, then the quantity in whi
h we will be interested is a fun
tion fk,S1

: {−1, +1}n−k → R,
fk,S1

(xk+1, . . . , xn) =
∑

T2⊆{k1,...,n} f̂(S1 ∪ T2)χT2
(xk+1, . . . , xn). We should note that in our de�nition

fk,S1
may be not Boolean anymore (even if f is).Next time we will devise a method for using fk,S1

as a guide in our exploration of the de
ision tree.Referen
es[BKW03℄ A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and thestatisti
al query model. Journal of the ACM, :50(4):506-519, 2003.[FGKP06℄ V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami On Agnosti
 Learning of Parities,Monomials and Halfspa
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eedings of FOCS '06.[KM91℄ E. Kushilevitz, and Y. Mansour. Learning de
ision trees using the Fourier spe
trum. InPro
eedings of STOC '91
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