
6.895 Randomness and Computation Marh 3, 2008Leture 8Leturer: Ronitt Rubinfeld Sribe: Aleksander M¡dryToday we visit one of the fundamental problems in Computational Learning Theory: learning par-ity/linear funtions in the presene of noise. In fat, the importane of this problems has been alsoreognized in many related �elds like Coding Theory, Fourier Analysis, and even Cryptography (e.g.there is onnetion of the hardness of learning noisy parity funtion to the hardness of ertain lattieproblems).1 The modelWe assume that there is a blak box Bf whih ontains a iruit omputing some parity funtion
f : {0, 1}n → {0, 1}. However, we do not have diret aess to Bf . Instead, we an get some (noisy)samples 〈x1, ℓ1〉, . . . 〈xm, ℓm〉, suh that xm ∈U {0, 1}n and ℓi is a noisy value of f(xi), where the natureof the noise i.e. onnetion between f(xi) and ℓi is to be spei�ed.2 No noiseClearly, if ℓi = f(xi) for all i, then there is no noise at all�this model orrespond to the anoniallearning model that was desribed in previous letures. In this ase, we an easily learn f using O(n)samples in polynomial time. We ahieve this, by taking n samples 〈x1, f(x1)〉, . . . , 〈xn, f(xn)〉, where all
xi are linearly independent (it an be shown that after taking O(n) samples we will �nd suh linearlyindependent subset with very high probability) and solving (e.g. by Gaussian elimination) the followinglinear system:
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f ontains xi in its de�nition i.e. f(x) =

⊕

i,yi
∗
=1 xi. So, we see that learning the parity funtion whenthere is no noise is almost trivial.3 Arbitrary noiseWhat happens if we let the noise to be arbitrary ? More preisely, what if we assume that we an getonly samples 〈x1, f̃(x1)〉, . . . 〈xm, f̃(xm)〉, where xi ∈U {0, 1}n and f̃ is a funtion whih is only δ-loseto f ? Clearly, now the task of learning f an be understood as �nding a linear funtion f ′ that is losestto f̃ . This setting is often referred to in the literature as agnosti learning of linear/parity funtions,and, sine the f̃ an be adversarially hosen, it is thought to be the hardest of models onsidered inlearning.So, how hard an the problem of agnosti learning of parity funtions be? By the mahinery that wehave already developed, we know that this problem orresponds to �nding the largest Fourier oe�ientof f̃ . And the latter problem is known to be NP-hard. Thus, we are not hoping to obtain a polynomial-time algorithm for this task. We see that this is a signi�ant di�erene ompared to the noiseless ase.
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4 Random noiseDisouraged by the NP-hardness of the ase of arbitrary noise, we an try to relax our problem. Namely,we onsider the model in whih the noise is random i.e. we have aess to samples 〈x1, ℓ1〉, . . . , 〈xm, ℓm〉where independently for eah i, xi ∈U {0, 1}n and ℓi is equal to f(xi) with probability 1 − η > 1
2 . Thiskind of model is often referred to in the literature as learning under lassi�ation noise.Now, it is natural to ask whether parity learning is signi�antly easier in this model. Somewhatsurprisingly, the answer is 'no'. A reent result of Feldman et al. [FGKP06℄ shows that the problem ofagnosti learning an be redued to the random noise model. Therefore, one again we do not hope fora polynomial-time algorithm.But still one question remains: an we do better than 2O(n) time that is ahievable by just brute-foreheking all possible linear funtions and estimating the distane, by taking enough samples to overomethe e�et of noise ?A positive answer i.e. a slightly sub-exponential, 2O( n

log n
) algorithm was given by Blum, Kalai,Wasserman [BKW03℄ and, despite being unimpressive at the �rst sight, it was used to establish manyimportant results.5 Blum-Kalai-Wasserman algorithmTheorem 1 If η < 1

2 , we an learn under lassi�ation noise parity funtion on k inputs in time
2O( k

log k
).ProofWe start the proof of the theorem by establishing the following lemmaLemma 2 (Noise lemma) Consider a set of samples 〈x1, ℓ1〉, . . . , 〈xm, ℓm〉 orresponding to the noiserate η. Then Pr[
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2 (1 − 2η)m.Proof of Lemma 2 We prove the lemma by indution on m. If m = 1, then the laim trivially holds.So, let us assume that the laim holds for m − 1, we will show that it then holds for m. By de�nitionand linearity of f , we have Pr[
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2 (1 − 2η)m.Hene, we see that the sum ∑m

i=1 ℓi has a bias toward the orret value of f(
∑m

i=1 xi). However,this bias vanishes exponentially with the size of the sample set. Therefore, we will need to take a lot ofsamples in order to amplify this bias to required value.To show how exatly it will be done, we introdue the following de�nitions. Let a = 1
2 log k and

b = 2k
log k

. Clearly, we have ab = k, so these numbers orrespond to a division of k-bit string into a bloksof length b eah.De�nition 3 Let Vi ⊆ {0, 1}k denote a subspae orresponding to the bitstrings with last i bloks equalto 0 i.e. x ∈ Vi if and only if xj = 0 for j > n − i · a.Moreover, by an i-sample of size m we mean a set of m elements of Vi drawn independently withuniform distribution from Vi.We now state and prove the following lemma.2



Lemma 4 (Progress lemma) Given i-sample Si of size m, x1, . . . , xm, we an onstrut in time
O(m log m) an (i + 1)-sample Si+1 of size ≥ m − 2b suh that eah element of Si+1 is a sum of twovetors from Si.Proof of Lemma Let us partition the elements of Si into (at most 2b) lasses orresponding topossible bit on�guration in (a − i)-th blok of bits. Note that by de�nition of Si all bloks after the
(a− i)-th one are already zeroed out. Now, in eah lass we pik an arbitrary element, subtrat it fromall the other elements in the lass and throw it away. Next, we take all the remaining elements (after thesubtration) as Si+1. Clearly, this operation an be performed in O(m log m) time and we have thrownaway at most 2b elements from Si (one for eah lass). By onstrution, eah element of Si+1 is a sum oftwo vetors from Si and, sine these two vetors have the same bit on�guration in the (a− i)-th blok,the resulting element of Si+1 is from Vi+1. Finally, sine we have thrown away the elements that wewere subtrating, the distribution of elements of Si+1 is uniform on Vi+1 with all elements independentof eah other. So, Si+1 is an (i + 1)-sample of size at least m − 2b.It is easy to obtain 0-sample of size m�we simply take m noisy samples and form the set S0. Now,if we take m = a× 2b samples, the Progress Lemma allows us to obtain an a− 1-sample Sa−1 of size 2b.The probability that Sa−1 ontains a basis vetor (1, 0, . . . , 0) is at least 1− (1− 1

2b )2
b

≥ 1−e−1, beause
Sa−1 has uniform distribution on Va−1 and |Va−1| = 2b. So, after repeating the proedure su�ientlymany times ( 1

1−e−1 in expetation), we will have (1, 0, . . . , 0) as a ombination of 2a−1 elements of S0. ByNoise Lemma, we know that with probability 1
2 + 1

2 (1− 2η)2
a−1 this ombination gives the orret valueof f((1, 0, . . . , 0)). So, after repeating the whole proedure poly(( 1

1−2η
)2

a

) times, Hoe�ding inequalityasserts that the majority vote on the obtained values of the ombination gives the orret answer, i.e.the value of f((1, 0, . . . , 0)), with very high probability.Finally, using the above approah to obtain reliable values of f on the remaining k− 1 basis vetors,we an use the proedure employed for the noiseless ase to obtain f .Clearly, the running time of the whole algorithm is poly(( 1
1−2η

)2
a

, a, 2b) = poly((1−2η)
√

k, log k, 2
2k

log k ) =

2O( k

log k
).6 Noisy parity when we are allowed to make queriesAs we have seen in the previous paragraphs, if getting sets of noisy samples of f is all that we an do,obtaining even slightly sub-exponential algorithm was non-trivial. However, if we strengthen our modelto allow blak-box queries, i.e. ask about a (noisy) value of some partiular xi, then the omplexity ofthe problem hanges dramatially.This is easy to notie in the ase of random noise. We an obtain reliable values of f on a basisvetor v by just querying the funtion for su�iently many pairs x and x + v, poly( 1

η
, log n) times, andby observing the probability if adding v �ips the value of the funtion.What is however a bit more surprising is that making queries allows us to learn parity funtion also inagnosti model. This result, due to Kushilevitz and Mansour [KM91℄, is another fundamental algorithmwith many appliations outside Learning Theory. Today we will start desribing it.7 Kushilevitz-Mansour algorithmThe algorithm takes as an input a blak box omputing f , and parameter θ > 0 (where f is somearbitrary funtion) and returns a set O of linear funtions suh that:3



• if for some S ⊆ [n], |f̂(S)| > θ then χS ∈ O (i.e. we output all linear funtions that are lose to f)
• if some χS ∈ O then |f̂(S)| > θ

2 (i.e. we output not too muh junk)As we an see this setting slightly generalizes the agnosti learning in the form presented before.The algorithm approahes the problem by examining a deision tree being a omplete binary tree ofheight n, whose i-th level orresponds to all 2i sets S ⊆ [i]. Sine the size of the tree is exponential,the algorithm must use a very good pruning tehnique whih, after starting from the root, allows it toexplore only these subtrees that promise to ontain leaves orresponding to the sets S ⊆ [n] with large
|f̂(S)|.More preisely, if the algorithm is urrently exploring k-th level of the tree and S1 ⊆ [k] is the urrentlyproessed node, then the quantity in whih we will be interested is a funtion fk,S1

: {−1, +1}n−k → R,
fk,S1

(xk+1, . . . , xn) =
∑

T2⊆{k1,...,n} f̂(S1 ∪ T2)χT2
(xk+1, . . . , xn). We should note that in our de�nition

fk,S1
may be not Boolean anymore (even if f is).Next time we will devise a method for using fk,S1

as a guide in our exploration of the deision tree.Referenes[BKW03℄ A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and thestatistial query model. Journal of the ACM, :50(4):506-519, 2003.[FGKP06℄ V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami On Agnosti Learning of Parities,Monomials and Halfspaes. In Proeedings of FOCS '06.[KM91℄ E. Kushilevitz, and Y. Mansour. Learning deision trees using the Fourier spetrum. InProeedings of STOC '91
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