6.895 Randomness and Computation March 3, 2008

Lecture 8
Lecturer: Ronitt Rubinfeld Scribe: Aleksander Madry

Today we visit one of the fundamental problems in Computational Learning Theory: learning par-
ity /linear functions in the presence of noise. In fact, the importance of this problems has been also
recognized in many related fields like Coding Theory, Fourier Analysis, and even Cryptography (e.g.
there is connection of the hardness of learning noisy parity function to the hardness of certain lattice
problems).

1 The model

We assume that there is a black box By which contains a circuit computing some parity function
f:{0,1}" — {0,1}. However, we do not have direct access to By. Instead, we can get some (noisy)
samples (x1,£1), ... {Zm,), such that z,, €y {0,1}" and ¢; is a noisy value of f(x;), where the nature
of the noise i.e. connection between f(x;) and ¢; is to be specified.

2 No noise

Clearly, if ¢; = f(x;) for all 7, then there is no noise at all—this model correspond to the canonical
learning model that was described in previous lectures. In this case, we can easily learn f using O(n)
samples in polynomial time. We achieve this, by taking n samples (z1, f(21)),. .., {(Zn, f(2,)), where all
x; are linearly independent (it can be shown that after taking O(n) samples we will find such linearly
independent subset with very high probability) and solving (e.g. by Gaussian elimination) the following
linear system:

where :vf denotes j-th bit of x;. Note that if y. € {0,1}" is a solution to this system then y¢ = 1 iff
f contains z; in its definition i.e. f(z) = P x;. So, we see that learning the parity function when
there is no noise is almost trivial.

=3

i,yi=1

3 Arbitrary noise

What happens if we let the noise to be arbitrary 7 More precisely, what if we assume that we can get
only samples (z1, f(z1)), ... {(Tm, f(xm)), where z; €y {0,1}"™ and f is a function which is only d-close
to f 7 Clearly, now the task of learning f can be understood as finding a linear function f’ that is closest
to f. This setting is often referred to in the literature as agnostic learning of linear/parity functions,
and, since the f can be adversarially chosen, it is thought to be the hardest of models considered in
learning.

So, how hard can the problem of agnostic learning of parity functions be? By the machinery that we
have already developed, we know that this problem corresponds to finding the largest Fourier coefficient
of f. And the latter problem is known to be NP-hard. Thus, we are not hoping to obtain a polynomial-
time algorithm for this task. We see that this is a significant difference compared to the noiseless case.

4 Random noise

Discouraged by the NP-hardness of the case of arbitrary noise, we can try to relax our problem. Namely,
we consider the model in which the noise is random i.e. we have access to samples (x1,£1), ..., (Tm, lm)
where independently for each i, z; €y {0,1}" and ¢; is equal to f(z;) with probability 1 —n > 4. This
kind of model is often referred to in the literature as learning under classification noise.

Now, it is natural to ask whether parity learning is significantly easier in this model. Somewhat
surprisingly, the answer is 'no’. A recent result of Feldman et al. [FGKPO06] shows that the problem of
agnostic learning can be reduced to the random noise model. Therefore, once again we do not hope for
a polynomial-time algorithm.

But still one question remains: can we do better than 2°(™ time that is achievable by just brute-force
checking all possible linear functions and estimating the distance, by taking enough samples to overcome
the effect of noise ?

A positive answer i.e. a slightly sub-exponential, 20(wgw) algorithm was given by Blum, Kalai,
Wasserman [BKWO03] and, despite being unimpressive at the first sight, it was used to establish many
important results.

5 Blum-Kalai-Wasserman algorithm

Theorem 1 If n < %, we can learn under classification noise parity function on k inputs in time
k
2O(logk)'

Proof
We start the proof of the theorem by establishing the following lemma

Lemma 2 (Noise lemma) Consider a set of samples (x1,01),...,{Tm,lm) corresponding to the noise
rate . Then Pr[> 0" ;= f(X7 @) = 5 + 3(1 —2n)™.

Proof of Lemma 2 We prove the lemma by induction on m. If m = 1, then the claim trivially holds.
So, let us assume that the claim holds for m — 1, we will show that it then holds for m. By definition
and linearity of f, we have Pr[>"" ¢; = f(X i, i) = Pr(> it b = > i) f(z3)] = Prilm = f(xm) A
S = f(@)] A Prilm # flam) AT 0 # ST f(a:)]. Now, by noting the fact, that noise
in each sample is independent and using the inductive hypothesis, we get Pr(Y ;" ; = f(3m, xi)] =
Pritn = f(am)] - P 4 = S0 f(@)] + Pritw # flam)] - PrIE 6 # S0 f(@0)] =
(1 —.n)(% +3 =20)+l =5 = 5(1 =2 ") = 5+ (1 — 2™

Hence, we see that the sum) ", ¢; has a bias toward the correct value of f(} ", z;). However,
this bias vanishes exponentially with the size of the sample set. Therefore, we will need to take a lot of
samples in order to amplify this bias to required value.

To show how exactly it will be done, we introduce the following definitions. Let a = %logk and
b= lfg’“k. Clearly, we have ab = k, so these numbers correspond to a division of k-bit string into a blocks
of length b each.

Definition 3 Let V; C {0,1}* denote a subspace corresponding to the bitstrings with last i blocks equal
to 0 i.e. x €V if and only if 27 =0 for j >n —i-a.

Moreover, by an i-sample of size m we mean a set of m elements of V; drawn independently with
uniform distribution from V;.

We now state and prove the following lemma.

Lemma 4 (Progress lemma) Given i-sample S; of size m, x1,...,Tm, we can construct in time
O(mlogm) an (i + 1)-sample S;11 of size > m — 2° such that each element of S;\1 is a sum of two
vectors from S;.

Proof of Lemma Let us partition the elements of S; into (at most 2°) classes corresponding to
possible bit configuration in (a — ¢)-th block of bits. Note that by definition of S; all blocks after the
(a —)-th one are already zeroed out. Now, in each class we pick an arbitrary element, subtract it from
all the other elements in the class and throw it away. Next, we take all the remaining elements (after the
subtraction) as S; ;1. Clearly, this operation can be performed in O(mlogm) time and we have thrown
away at most 2° elements from S; (one for each class). By construction, each element of S;; is a sum of
two vectors from S; and, since these two vectors have the same bit configuration in the (a — ¢)-th block,
the resulting element of S;11 is from V; ;. Finally, since we have thrown away the elements that we
were subtracting, the distribution of elements of S;y; is uniform on V;;; with all elements independent

of each other. So, S;11 is an (i + 1)-sample of size at least m — 2°.
|

It is easy to obtain O-sample of size m—we simply take m noisy samples and form the set Sy. Now,
if we take m = a x 2° samples, the Progress Lemma allows us to obtain an a — 1-sample S,_1 of size 2°.
The probability that S,_1 contains a basis vector (1,0, ...,0) is at least 1 — (1 — 2%)217 > 1—e!, because
Sq—1 has uniform distribution on V,_1 and |V,_1| = 2. So, after repeating the procedure sufficiently
many times (;—— in expectation), we will have (1,0, ...,0) as a combination of 2! elements of Sy. By
Noise Lemma, we know that with probability % + %(1 — 277)2%1 this combination gives the correct value
of f((1,0,...,0)). So, after repeating the whole procedure poly((ﬁ)w) times, Hoeffding inequality
asserts that the majority vote on the obtained values of the combination gives the correct answer, i.e.
the value of f((1,0,...,0)), with very high probability.

Finally, using the above approach to obtain reliable values of f on the remaining k — 1 basis vectors,
we can use the procedure employed for the noiseless case to obtain f.

Clearly, the running time of the whole algorithm is poly((ﬁ)r ,a,2%) = poly((1—2n)V*, log k, 2%)
20 (7)),

|

6 Noisy parity when we are allowed to make queries

As we have seen in the previous paragraphs, if getting sets of noisy samples of f is all that we can do,
obtaining even slightly sub-exponential algorithm was non-trivial. However, if we strengthen our model
to allow black-box queries, i.e. ask about a (noisy) value of some particular x;, then the complexity of
the problem changes dramatically.

This is easy to notice in the case of random noise. We can obtain reliable values of f on a basis
vector v by just querying the function for sufficiently many pairs « and x + v, poly(%, logn) times, and
by observing the probability if adding v flips the value of the function.

What is however a bit more surprising is that making queries allows us to learn parity function also in
agnostic model. This result, due to Kushilevitz and Mansour [KM91], is another fundamental algorithm
with many applications outside Learning Theory. Today we will start describing it.

7 Kushilevitz-Mansour algorithm

The algorithm takes as an input a black box computing f, and parameter § > 0 (where f is some
arbitrary function) and returns a set O of linear functions such that:

e if for some S C [n], |f(S)| > 6 then x5 € O (i.e. we output all linear functions that are close to f)
e if some x5 € O then |f(S)] > ¢ (i.e. we output not too much junk)

As we can see this setting slightly generalizes the agnostic learning in the form presented before.

The algorithm approaches the problem by examining a decision tree being a complete binary tree of
height n, whose i-th level corresponds to all 2¢ sets S C [i]. Since the size of the tree is exponential,
the algorithm must use a very good pruning technique which, after starting from the root, allows it to
explore only these subtrees that promise to contain leaves corresponding to the sets S C [n] with large
FACHE

More precisely, if the algorithm is currently exploring k-th level of the tree and S; C [k] is the currently
processed node, then the quantity in which we will be interested is a function fi g, : {—1,+1}" % — R,
sy (Thgty ooy Tn) = Eng{kl,...,n} f(Sl UT2)x1, (Tkt1, -, 2,). We should note that in our definition
fr,s, may be not Boolean anymore (even if f is).

Next time we will devise a method for using fx s, as a guide in our exploration of the decision tree.

References
[BKWO03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the

statistical query model. Journal of the ACM, :50(4):506-519, 2003.

[FGKPO06] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami On Agnostic Learning of Parities,
Monomials and Halfspaces. In Proceedings of FOCS ’06.

[KM91] E. Kushilevitz, and Y. Mansour. Learning decision trees using the Fourier spectrum. In
Proceedings of STOC 91

