
6.895 Randomness and Computation March 10, 2008

Lecture 10

Lecturer: Ronitt Rubinfeld Scribe: Alex Cornejo

Last Lecture

Definition 1 (L1 Norm) Let f : {±1}n → R, then L1(f) =
∑

S

∣
∣
∣f̂(S)

∣
∣
∣.

Claim 2 Given ε, Sε =
{

S ⊆ [n] :
∣
∣
∣f̂(s)

∣
∣
∣ = ε

L1(f)

}

, we have

1. |Sε| ≤
(L1(f))2

ε

2.
∑

S∈Sε
f̂(S)2 ≥ 1 − ε

Theorem 3 Boolean functions can be learned to ε-accuracy with poly(n, L1(f), 1/ε) queries under uni-

form distribution.

Definition 4 (Monotone functions) We assume the following ordering of vectors in {±1}n
: x ≤ y

if and only if for all coordinates i, xi ≤ yi. A function f is monotone if ∀x ≤ y, f(x) ≤ f(y).

1 Learning Decision Trees

We show how to apply learning with ε-accuracy using poly(n, L1(f), 1/ε) queries to decision trees.
x1

x2

+1

+1

x3

−1

x4

+1

−1

−1

x3

−1

Theorem 5 If f has a size t decision tree then L1(f) ≤ t, where t is

the number of nodes in the tree.

Notice that Theorem 5 together with Theorem 3 imply that we can
learn decision trees with poly(n, t, 1/ε) queries.

Proof For each leaf ℓ, we define the following function

gℓ(x) =

{

1 if x reaches ℓ,

0 otherwise.

W.l.o.g. the variables on the path to ℓ are x1, . . . , xk and they always take the “-1” direction. Then

gℓ(x) =

(
1 − x1

2

) (
1 − x2

2

)

· · ·

(
1 − xk

2

)

=
∑

S⊆[k]

(−1)|S|

2k
χS

Notice that L1(gℓ) =
∑

S⊆[k]
1
2k = 1.

We now proceed to define f in terms of g.

f(x) =
∑

paths ℓ

gℓ(x) ·
(

output of leaf
at end of ℓ

)

︸ ︷︷ ︸

±1

f̂(S) =
∑

paths ℓ

ĝℓ(S) ·
(

output of leaf
at end of ℓ

)

︸ ︷︷ ︸

±1

1

Finally, we evaluate the L1 norm of f .

L1(f) =
∑

S

∣
∣
∣f̂(S)

∣
∣
∣

=
∑

S

∣
∣
∣
∣
∣
∣

∑

paths ℓ

±ĝℓ(S)

∣
∣
∣
∣
∣
∣

≤
∑

paths ℓ

∑

S

|ĝℓ(S)|

︸ ︷︷ ︸

L1(gℓ)=1

= number of paths

≤ t

2 Learning monotone functions

Comment: You can improve on the algorithm we are about to describe by restricting the set of our
potential hypothesis g to ±1 and majority functions (instead of dictators). Instead of Ω(1√

n
) advantage,

this would give Ω(1√
n
) advantage. It is also possible to remove the queries using the low degree algorithm

and sampling on the order of 2
√

n.

Throughout the following we assume that we want to learn a function with respect to the uniform dis-
tribution. We also assume access to queries. Furthermore, we call each pair (x1, . . . , xk−1,−1, xk+1, . . . , xn)
and (x1, . . . , xk−1, +1, xk+1, . . . , xn) an edge in the hypercube {±1}

n
.

Theorem 6 For each monotone function f : {±1}
n
→ {±1}, there exists a function g ∈ {±1, x1, . . . , xn}

such that Prx [f(x) = g(x)] ≥ 1
2 + Ω(1

n
).

|
|

|
|

|
|

| | |

+1, . . . , +1

+1

−1

−1, . . . ,−1

This figure represents a Boolean hypercube.
2n nodes.
2n−1 edges in direction i
n2n−1 total edges.
A cut edge connects a red node to a blue node.

Definition 7 (Influence of the ith variable)

Infi(f) = f̂({i})
︸ ︷︷ ︸

Homework 2

= 2 Pr [f(x) 6= xi] − 1
︸ ︷︷ ︸

a previous lecture

Infi(f) =
of cut edges in ith direction

2n−1

2

Definition 8 (Total influence)

Inf(f) =
n∑

i=1

Infi(f)

=
of cut edges

2n−1

Plan of attack. To show that Infi(f) is Ω(1/n), we will first define the concept of a canonical path
and use it to prove a lower bound.

Definition 9 (Canonical path) For all (x, y) such that x is red and y is blue, a canonical path from
x to y scans bits from left to right, flipping bits where needed. Each flip corresponds to a step in the

path.

x = -1 +1 +1 +1 +1
-1 -1 +1 +1 +1
-1 -1 -1 +1 +1

y = -1 -1 -1 +1 -1

Observation 10 It is clear that since the start of a canonical path is red and the end is blue, then there

exists at least one edge (u, v) in the path such that u is red and v is blue.

We can assume that Pr [f(x) = 1] ∈
[

1
4 , 3

4

]
since otherwise we could use one of the constant ±1

functions to approximate f . Under this assumption, how many red-blue (x, y) pairs can we expect?

≥

(
1

4
2n

)2

=
1

16
22n

Lemma 11 For any given edge, there are ≤ 2n canonical paths which cross it.

Proof Consider an edge (w, w⊕i), a part of a canonical path from x to y. Notice that w and w⊕i have
Hamming distance one and therefore only differ in one bit (the ith bit).

We argue that due to the definition of canonical paths, there are a limited number of paths that can
share an edge.

x
i

w b
w⊕i ¬b

y1 . . . yi−1 xi+1 . . . xn

y

For any canonical path between (x′, y′) that crosses the edge (w, w⊕i), the prefix y′
1 . . . y′

i−1 of y′

has to be the same as the prefix of w. This gives us at most 2n−i choices for the last n − 1 bits of y′.
Analogously, the suffix x′

i+1 . . . x′
n of x′ has to be the same as the suffix of w, and we have at most 2i−1

choices for the first bits of x′. Therefore there are ≤ 2n settings of x′ and y′ consistent with the edge.

Since we know that each canonical path has at least one red-blue edge, using lemma 11, we can now
give a lower bound on the number of red-blue edges.

of red-blue edges ≥
1
1622n

2n
=

1

16
2n

3

Therefore by the pigeon-hole principle, there is i such that ≥ 1
16n

2n red-blue edges exist in direction
i. Finally, using the definition for the influence of a variable,

Infi(f) ≥
1

16n
2n

2n−1
=

1

8n
.

Since Pr [f(x) 6= xi] = 1
2 + Infi(f)/2, we have that

Pr [f(x) 6= xi] ≥
1

2
+

1

16n

=
1

2
+ Ω

(
1

n

)

.

This completes our proof of Theorem 6.

3 Next Lecture: Boosting PAC Learners

Definition 12 (PAC learning) An algorithm A PAC learns a concept class C if ∀c ∈ C, ∀ distribu-

tions D, ∀ε, δ > 0, given examples of c using D, then A outputs a hypothesis h such that with probability

≥ 1 − δ
Pr
D

[c(x) 6= h(x)] ≤ ε.

Definition 13 (Weak PAC learning) An algorithm WL weakly PAC learns a concept class C with

parameter τ if ∀c ∈ C, ∀ distributions D, ∀δ > 0, given examples of c according to distribution D
algorithm A outputs a hypothesis h such that with probability ≥ 1 − δ

Pr
D

[c(x) 6= h(x)] ≤
1

2
− τ.

The parameter τ is referred to as the advantage of the weak learner.

For some years it was thought that these two problems where separate, but Schapire proved that it
is possible to boost weak PAC learners to “strong” PAC learners.

Theorem 14 (Shapire) If C can be weakly learned, then C can be “strongly” learned.

Notice that that we cannot apply these definitions to boost the algorithm presented in the previous
section, since the algorithm we developed relied on the assumption of a uniform distribution, and thus
it is not a proper “weak PAC learner”.

4

