
6.895 Randomness and Computation March 12, 2008

Lecture 11

Lecturer: Ronitt Rubinfeld Scribe: Yoong Keok Lee

Today, we will show how a weak PAC (Probably Approximate Correct) learning algorithm can be
boosted to a strong one. This result has far-reaching implications beyond computational learning theory.

1 Introduction

Definition 1 An algorithm A (“strongly”) PAC learns a concept class F if ∀f ∈ F , ∀distribution D, ∀ǫ, δ >

0, with probability ≥ 1 − δ, given examples ∈ D labelled according to f , A outputs h such that

Pr
D

[h(x) 6= f(x)] ≤ ǫ. (1)

Remark

• ǫ is called the accuracy parameter, and δ is called the security parameter or the failure probability.

• Parameter δ is inconsequential here: As long as it is reasonably small, we can drive it down to an
arbitrarily small value. (Refer to Question 2 in Homework 2.) For this reason, we shall be omitting
this parameter from here onwards.

• Hypothesis h does not necessarily have to be in concept class F . If it does, then the model is called
a proper learning model.

• Distribution D does not have to be uniform either. It can be any distribution, and therefore, the
algorithm is distribution-free.

Definition 2 An algorithm WL weakly PAC learns a concept class F if ∀f ∈ F , ∀distribution D, ∃γ > 0, ∀δ >

0, with probability ≥ 1 − δ, given examples ∈ D labelled according to f , WL outputs c such that

Pr
D

[c(x) 6= f(x)] ≤
1

2
−

γ

2
. (2)

Definition 3 The term γ
2 is called the advantage of WL.

Remark Here, we assume that the concept class F is Boolean, and so hypothesis c can be just doing
slightly better than one of the two constant function. Also, note that WL must be able to output such
c for all distributions, not just, say, the uniform distribution.

Theorem 1 If F can be weakly learned, then F can be strongly learned.

2 A Boosting Algorithm

In this section, we present an algorithm which boosts a weak learner to a strong one, hence proving the
above theorem. There are several variants the algorithm, but they revolve around the same idea.

2.1 The Intuition

Suppose a weaker learner is only 51% accurate. We can first learn a weak hypothesis, filter away
examples which are correctly classified, and then call the weak learner on the remaining 49% of the data.
To increase the collective coverage of the hypotheses, we can repeat alternating between the filtering
and the learning steps. A natural question is: Given an unseen example, which hypothesis shall we use?
The basic idea of the boosting algorithm is to construct a filtering mechanism so that the majority vote
of the collective hypotheses works out.

1

2.2 The Algorithm

Given a weak learner WL, a distribution D, a concept f , parameters ǫ and γ, the boosting algorithm
Boost is the following: (We illustrate the case for the uniform distribution. Note that the algorithm can
be easily modified to be distribution-free although we are not showing it here.)

Boost(WL,D, f, ǫ, γ)
initialize distribution D0 = D = U

Use weak learner WL to generate weak hypothesis c1 such that PrD0
[f(x) = c1(x)] ≥ 1

2 + γ
2

Set current hypothesis h = c1

for i = 1 to T

(1) Construct Di with the filtering mechanism Filter(D, h = maj(c1, . . . , ci), f, ǫ, γ)
(2) Run WL on Di to get weak hypothesis ci+1 such that PrDi

[f(x) = ci+1(x)] ≥ 1
2 + γ

2
(3) Update h = maj(c1, . . . , ci+1)

return h = maj(c1, . . . , cT+1) such that PrD[f(x) = h(x)] ≥ 1 − ǫ

Filter(D, h, f, ǫ, γ)
do until we have the desired number of examples

Draw an example x from D
if h = maj(c1, . . . , ci) is wrong on x, then keep x

else if # of ci’s right - # of ci’s wrong > 1
ǫγ

, then throw x away

else, say # of ci’s right - # of ci’s wrong = α
ǫγ

, then keep x with probability 1 − α

return all retained examples Di+1

The algorithm assumes the weak learner never fails. (Recall that we can easily decrease the probability
of failure.) Before giving the bound T on the maximum number of iterations needed, we first introduce
some notations.

3 Preliminaries

Here are some notations and their properties:

1. Rc(x) =

{
+1 if f(x) = c(x)
−1 o.w.

gives +1 if (weak) hypothesis c is right on example x

2. Ni(x) =
∑

1≤j≤i Rcj
(x) is the number of right c’s exceeding the wrong ones

3. Mi(x) =

1 if Ni(x) ≤ 0
0 if Ni(x) ≥ 1

ǫγ

1 − ǫγNi(x) o.w.
is a “measure” which upper bounds the error of hypothesis h = maj(c1, . . . , ci) on example x.

4. µ(M) = 1
2n

∑

x M(x) ≥ error(h) ≥ ǫ is the “mean” of M . It upper bounds the error of h and
therefore also ǫ. (We actually estimate µ(M) by sampling in each iteration and stop if µ(M) < ǫ.)

5. |M | =
∑

x M(x) = 2nµ(M) is the total “mass” of all examples according to “measure” M .

6. DM (x) = M(x)
|M| is a distribution over x given M . (Note that we obtain Di with ci, and so

DMi
= Di.)

7. Advc(M) =
∑

x Rc(x)M(x) is the advantage of c on M . (Random guessing gives 0.)

8. Advc(M) ≥ γ|M | iff Prx∈DM
[c(x) = f(x)] ≥ 1

2 + γ
2

9. If Prx∈DM
[c(x) = f(x)] ≥ 1

2 + γ
2 and µ(M) ≥ ǫ, then Advc(M) ≥(8) γ|M | = γ2nµ(M) ≥(4) γ2nǫ

2

4 Convergence Proof

Claim 2 Ai(x) =
∑

0≤j≤i−1 Rcj+1
(x)Mj(x) < 1

ǫγ
+ 0.5ǫγi

Before proving this claim, we first use it to bound the maximum number of iterations required by the
boosting algorithm. Hence, if a concept can be weakly PAC learned, then it can be (“strongly”) PAC
learned.

Claim 3 The maximum number of iterations required by the boosting algorithm is ≤ 2
γ2ǫ2

.

Proof We prove the claim by showing that assuming the algorithm does not stop after 2
γ2ǫ2

iterations

leads to a contradiction. Suppose the algorithm continues to run after iteration i0 > 2
(ǫγ)2 (i.e. µ(Mi) ≥

ǫ), a lower bound can be derived as follows:

∑

x

Ai0+1 =
∑

x

∑

0≤j≤i0

Rcj+1
(x)Mj(x) (3)

=
∑

0≤j≤i0

∑

x

Rcj+1
(x)Mj(x)

︸ ︷︷ ︸

Advcj+1(Mj(x))

(4)

≥ (i0 + 1)γ2nǫ (using property 9 in section 3) (5)

Using Claim 2 leads to an upper bound:

∑

x

Ai0+1 <
∑

x

(
1

ǫγ
+ 0.5ǫγi0) (6)

= 2n(
1

ǫγ
+ 0.5ǫγi0) (7)

Using both bounds, (i0 + 1)γ2nǫ ≤
∑

x Ai0+1(x) < 2n(1
ǫγ

+ 0.5ǫγi0) ⇒ i0 < 2
γ2ǫ2

, we arrive at a

contradiction. So, the algorithm must run for 2
γ2ǫ2

iterations or less.

Fact 4 (The Elevator Argument) If one rides an elevator from the ground floor, then one ascends
from the k-th to the (k + 1)-th floor at most 1 more time than one descends from the (k + 1)-th to the
k-th floor. (Analogous argument holds when traveling from the ground floor to basements.)

Proof of Claim 2: The process of adding each term of Ni(x) corresponds to an elevator ride with
Rcj

(x) dictating the direction and partial sum Nj(x) denoting the current level. The plan is to first
match pairs of Rcj+1(x)Mj(x) terms and obtain an upper bound of their sum using properties of function
Mj(x). As for the unmatched pairs, we can bound the number of them (using the Elevator Argument)
and also their sums. And so, an upper bound for Ai(x) can be obtained.

Matched Pairs

For each k ≥ 0,
match j such that Nj(x) = k and Nj+1(x) = k + 1
with j′ such that Nj′(x) = k + 1 and Nj′+1(x) = k

For each matched pair of terms corresponding to indices a = j, b = j′, the sum is
Rca+1

(x)
︸ ︷︷ ︸

+1

Ma(x)
︸ ︷︷ ︸

Na(x)=k

+ Rcb+1
(x)

︸ ︷︷ ︸

−1

Mb(x)
︸ ︷︷ ︸

Nb(x)=k+1

= Ma(x) − Mb(x).

3

If 0 ≤ k ≤ 1
ǫγ

or 0 ≤ k + 1 ≤ 1
ǫγ

, then

Ma(x) − Mb(x) ≤ ǫγ (because Mb(x)−Ma(x)
k+1−k

is the slope of Mi(x) which is ≥ −ǫγ),

else
Ma(x) − Mb(x) = 0.

We can arrive at the same result for k < 0. Therefore, the total contribution of matched pairs is ≤ 0.5ǫγi

(because Ai(x) has i terms).

Unmatched Terms Notice that unmatched terms are in the “same direction”, i.e. all Rcj
(x)’s are

either negative or positive. Suppose all Rcj
(x)’s are negative (i.e. −1), then their contribution to the

sum is negative (because each term becomes −Mj(x) ≤ 0). So they do not loosen the upper bound we
already derived from matched pairs.

Suppose all Rcj
(x)’s are positive (i.e. +1). Then Nj(x) ≥ 0, and so each term is Mj(x) = 1−ǫγNj(x)

if Nj(x) ∈ [0, 1
ǫγ

] and 0 otherwise. The Elevator Lemma tells us that there is at most one unmatched

Nj(x) for each integer value in the interval [0, 1
ǫγ

], and so the total contribution of them (sum of a

arithmetic series from 0 to 1 with 1
ǫγ

terms) is ≤ 1
2ǫγ

< 1
ǫγ

Summing up the total contribution from both matched and unmatched terms gives Ai(x) < 1
ǫγ

+
0.5ǫγi.

4

