6.895 Randomness and Computation	March 12, 2008
Lecture 11	
Lecturer: Ronitt Rubinfeld	Scribe: Yoong Keok Lee

Today, we will show how a weak PAC (Probably Approximate Correct) learning algorithm can be boosted to a strong one. This result has far-reaching implications beyond computational learning theory.

1 Introduction

Definition 1 An algorithm A ("strongly") PAC learns a concept class \mathcal{F} if $\forall f \in \mathcal{F}, \forall distribution \mathcal{D}, \forall \epsilon, \delta > 0$, with probability $\geq 1 - \delta$, given examples $\in \mathcal{D}$ labelled according to f, A outputs h such that

$$\Pr_{\mathcal{D}}[h(x) \neq f(x)] \le \epsilon.$$
(1)

Remark

- ϵ is called the accuracy parameter, and δ is called the security parameter or the failure probability.
- Parameter δ is inconsequential here: As long as it is reasonably small, we can drive it down to an arbitrarily small value. (Refer to Question 2 in Homework 2.) For this reason, we shall be omitting this parameter from here onwards.
- Hypothesis h does not necessarily have to be in concept class \mathcal{F} . If it does, then the model is called a proper learning model.
- Distribution \mathcal{D} does not have to be uniform either. It can be any distribution, and therefore, the algorithm is distribution-free.

Definition 2 An algorithm WL weakly PAC learns a concept class \mathcal{F} if $\forall f \in \mathcal{F}, \forall distribution \mathcal{D}, \exists \gamma > 0, \forall \delta > 0$, with probability $\geq 1 - \delta$, given examples $\in \mathcal{D}$ labelled according to f, WL outputs c such that

$$\Pr_{\mathcal{D}}[c(x) \neq f(x)] \le \frac{1}{2} - \frac{\gamma}{2}.$$
(2)

Definition 3 The term $\frac{\gamma}{2}$ is called the advantage of WL.

Remark Here, we assume that the concept class \mathcal{F} is Boolean, and so hypothesis c can be just doing slightly better than one of the two constant function. Also, note that WL must be able to output such c for all distributions, not just, say, the uniform distribution.

Theorem 1 If \mathcal{F} can be weakly learned, then \mathcal{F} can be strongly learned.

2 A Boosting Algorithm

In this section, we present an algorithm which boosts a weak learner to a strong one, hence proving the above theorem. There are several variants the algorithm, but they revolve around the same idea.

2.1 The Intuition

Suppose a weaker learner is only 51% accurate. We can first learn a weak hypothesis, filter away examples which are correctly classified, and then call the weak learner on the remaining 49% of the data. To increase the collective coverage of the hypotheses, we can repeat alternating between the filtering and the learning steps. A natural question is: Given an unseen example, which hypothesis shall we use? The basic idea of the boosting algorithm is to construct a filtering mechanism so that the majority vote of the collective hypotheses works out.

2.2 The Algorithm

Given a weak learner WL, a distribution \mathcal{D} , a concept f, parameters ϵ and γ , the boosting algorithm Boost is the following: (We illustrate the case for the uniform distribution. Note that the algorithm can be easily modified to be distribution-free although we are not showing it here.)

 $\mathsf{Boost}(\mathsf{WL}, \mathcal{D}, f, \epsilon, \gamma)$ **initialize** distribution $\mathcal{D}_0 = \mathcal{D} = \mathcal{U}$ Use weak learner WL to generate weak hypothesis c_1 such that $\Pr_{\mathcal{D}_0}[f(x) = c_1(x)] \geq \frac{1}{2} + \frac{\gamma}{2}$ Set current hypothesis $h = c_1$ for i = 1 to T(1) Construct \mathcal{D}_i with the filtering mechanism $\mathsf{Filter}(\mathcal{D}, h = \mathrm{maj}(c_1, \ldots, c_i), f, \epsilon, \gamma)$ (2) Run WL on \mathcal{D}_i to get weak hypothesis c_{i+1} such that $\Pr_{\mathcal{D}_i}[f(x) = c_{i+1}(x)] \geq \frac{1}{2} + \frac{\gamma}{2}$ (3) Update $h = maj(c_1, ..., c_{i+1})$ return $h = \operatorname{maj}(c_1, \ldots, c_{T+1})$ such that $\Pr_{\mathcal{D}}[f(x) = h(x)] \ge 1 - \epsilon$ $\mathsf{Filter}(\mathcal{D}, h, f, \epsilon, \gamma)$ do until we have the desired number of examples Draw an example x from \mathcal{D} if $h = \text{maj}(c_1, \ldots, c_i)$ is wrong on x, then keep x else if # of c_i 's right - # of c_i 's wrong > $\frac{1}{\epsilon\gamma}$, then throw x away else, say # of c_i 's right - # of c_i 's wrong $= \frac{\alpha}{\epsilon \gamma}$, then keep x with probability $1 - \alpha$ **return** all retained examples \mathcal{D}_{i+1}

The algorithm assumes the weak learner never fails. (Recall that we can easily decrease the probability of failure.) Before giving the bound T on the maximum number of iterations needed, we first introduce some notations.

3 Preliminaries

Here are some notations and their properties:

- 1. $R_c(x) = \begin{cases} +1 & \text{if } f(x) = c(x) \\ -1 & \text{o.w.} \end{cases}$ gives +1 if (weak) hypothesis c is right on example x
- 2. $N_i(x) = \sum_{1 \le j \le i} R_{c_j}(x)$ is the number of right c's exceeding the wrong ones
- 3. $M_i(x) = \begin{cases} 1 & \text{if } N_i(x) \le 0\\ 0 & \text{if } N_i(x) \ge \frac{1}{\epsilon\gamma}\\ 1 \epsilon\gamma N_i(x) & \text{o.w.} \end{cases}$

is a "measure" which upper bounds the error of hypothesis $h = \text{maj}(c_1, \ldots, c_i)$ on example x.

- 4. $\mu(M) = \frac{1}{2^n} \sum_x M(x) \ge \operatorname{error}(h) \ge \epsilon$ is the "mean" of M. It upper bounds the error of h and therefore also ϵ . (We actually estimate $\mu(M)$ by sampling in each iteration and stop if $\mu(M) < \epsilon$.)
- 5. $|M| = \sum_x M(x) = 2^n \mu(M)$ is the total "mass" of all examples according to "measure" M.
- 6. $D_M(x) = \frac{M(x)}{|M|}$ is a distribution over x given M. (Note that we obtain \mathcal{D}_i with c_i , and so $D_{M_i} = \mathcal{D}_i$.)
- 7. $Adv_c(M) = \sum_x R_c(x)M(x)$ is the advantage of c on M. (Random guessing gives 0.)
- 8. $\operatorname{Adv}_c(M) \ge \gamma |M|$ iff $\operatorname{Pr}_{x \in D_M}[c(x) = f(x)] \ge \frac{1}{2} + \frac{\gamma}{2}$
- 9. If $\Pr_{x \in D_M}[c(x) = f(x)] \ge \frac{1}{2} + \frac{\gamma}{2}$ and $\mu(M) \ge \epsilon$, then $\operatorname{Adv}_c(M) \ge_{(8)} \gamma |M| = \gamma 2^n \mu(M) \ge_{(4)} \gamma 2^n \epsilon$

4 Convergence Proof

Claim 2 $A_i(x) = \sum_{0 \le j \le i-1} R_{c_{j+1}}(x) M_j(x) < \frac{1}{\epsilon \gamma} + 0.5 \epsilon \gamma i$

Before proving this claim, we first use it to bound the maximum number of iterations required by the boosting algorithm. Hence, if a concept can be weakly PAC learned, then it can be ("strongly") PAC learned.

Claim 3 The maximum number of iterations required by the boosting algorithm is $\leq \frac{2}{\gamma^2 \epsilon^2}$.

Proof We prove the claim by showing that assuming the algorithm does not stop after $\frac{2}{\gamma^2 \epsilon^2}$ iterations leads to a contradiction. Suppose the algorithm continues to run after iteration $i_0 > \frac{2}{(\epsilon \gamma)^2}$ (i.e. $\mu(M_i) \ge \epsilon$), a lower bound can be derived as follows:

$$\sum_{x} A_{i_0+1} = \sum_{x} \sum_{0 \le j \le i_0} R_{c_{j+1}}(x) M_j(x)$$
(3)

$$= \sum_{0 \le j \le i_0} \underbrace{\sum_{x} R_{c_{j+1}}(x) M_j(x)}_{Adv_{c_{j+1}}(M_j(x))}$$

$$\tag{4}$$

$$\geq (i_0 + 1)\gamma 2^n \epsilon \quad \text{(using property 9 in section 3)} \tag{5}$$

Using Claim 2 leads to an upper bound:

$$\sum_{x} A_{i_0+1} < \sum_{x} \left(\frac{1}{\epsilon\gamma} + 0.5\epsilon\gamma i_0\right) \tag{6}$$

$$= 2^{n} \left(\frac{1}{\epsilon \gamma} + 0.5 \epsilon \gamma i_{0}\right) \tag{7}$$

Using both bounds, $(i_0 + 1)\gamma 2^n \epsilon \leq \sum_x A_{i_0+1}(x) < 2^n (\frac{1}{\epsilon\gamma} + 0.5\epsilon\gamma i_0) \Rightarrow i_0 < \frac{2}{\gamma^2\epsilon^2}$, we arrive at a contradiction. So, the algorithm must run for $\frac{2}{\gamma^2\epsilon^2}$ iterations or less.

Fact 4 (The Elevator Argument) If one rides an elevator from the ground floor, then one ascends from the k-th to the (k + 1)-th floor at most 1 more time than one descends from the (k + 1)-th to the k-th floor. (Analogous argument holds when traveling from the ground floor to basements.)

Proof of Claim 2: The process of adding each term of $N_i(x)$ corresponds to an elevator ride with $R_{c_j}(x)$ dictating the direction and partial sum $N_j(x)$ denoting the current level. The plan is to first match pairs of $R_{c_{j+1}}(x)M_j(x)$ terms and obtain an upper bound of their sum using properties of function $M_j(x)$. As for the unmatched pairs, we can bound the number of them (using the Elevator Argument) and also their sums. And so, an upper bound for $A_i(x)$ can be obtained.

Matched Pairs

For each $k \ge 0$, match j such that $N_j(x) = k$ and $N_{j+1}(x) = k+1$ with j' such that $N_{j'}(x) = k+1$ and $N_{j'+1}(x) = k$

For each matched pair of terms corresponding to indices a = j, b = j', the sum is $\underbrace{R_{c_{a+1}}(x)}_{+1} \underbrace{M_a(x)}_{N_a(x)=k} + \underbrace{R_{c_{b+1}}(x)}_{-1} \underbrace{M_b(x)}_{N_b(x)=k+1} = M_a(x) - M_b(x).$

If $0 \le k \le \frac{1}{\epsilon\gamma}$ or $0 \le k+1 \le \frac{1}{\epsilon\gamma}$, then $M_a(x) - M_b(x) \le \epsilon\gamma$ (because $\frac{M_b(x) - M_a(x)}{k+1-k}$ is the slope of $M_i(x)$ which is $\ge -\epsilon\gamma$), else $M_a(x) - M_b(x) = 0$.

We can arrive at the same result for k < 0. Therefore, the total contribution of matched pairs is $\leq 0.5\epsilon\gamma i$ (because $A_i(x)$ has *i* terms).

Unmatched Terms Notice that unmatched terms are in the "same direction", i.e. all $R_{c_j}(x)$'s are either negative or positive. Suppose all $R_{c_j}(x)$'s are negative (i.e. -1), then their contribution to the sum is negative (because each term becomes $-M_j(x) \leq 0$). So they do not loosen the upper bound we already derived from matched pairs.

Suppose all $R_{c_j}(x)$'s are positive (i.e. +1). Then $N_j(x) \ge 0$, and so each term is $M_j(x) = 1 - \epsilon \gamma N_j(x)$ if $N_j(x) \in [0, \frac{1}{\epsilon\gamma}]$ and 0 otherwise. The Elevator Lemma tells us that there is at most one unmatched $N_j(x)$ for each integer value in the interval $[0, \frac{1}{\epsilon\gamma}]$, and so the total contribution of them (sum of a arithmetic series from 0 to 1 with $\frac{1}{\epsilon\gamma}$ terms) is $\le \frac{1}{2\epsilon\gamma} < \frac{1}{\epsilon\gamma}$

Summing up the total contribution from both matched and unmatched terms gives $A_i(x) < \frac{1}{\epsilon\gamma} + 0.5\epsilon\gamma i$.