6.895 Randomness and Computation	March 12, 2008
Lecturer: Ronitt Rubinfeld	Lecture 11

Today, we will show how a weak PAC (Probably Approximate Correct) learning algorithm can be boosted to a strong one. This result has far-reaching implications beyond computational learning theory.

1 Introduction

Definition 1 An algorithm A ("strongly") PAC learns a concept class \mathcal{F} if $\forall f \in \mathcal{F}, \forall$ distribution $\mathcal{D}, \forall \epsilon, \delta>$ 0 , with probability $\geq 1-\delta$, given examples $\in \mathcal{D}$ labelled according to f, A outputs h such that

$$
\begin{equation*}
\underset{\mathcal{D}}{\operatorname{Pr}}[h(x) \neq f(x)] \leq \epsilon . \tag{1}
\end{equation*}
$$

Remark

- ϵ is called the accuracy parameter, and δ is called the security parameter or the failure probability.
- Parameter δ is inconsequential here: As long as it is reasonably small, we can drive it down to an arbitrarily small value. (Refer to Question 2 in Homework 2.) For this reason, we shall be omitting this parameter from here onwards.
- Hypothesis h does not necessarily have to be in concept class \mathcal{F}. If it does, then the model is called a proper learning model.
- Distribution \mathcal{D} does not have to be uniform either. It can be any distribution, and therefore, the algorithm is distribution-free.

Definition 2 An algorithm WL weakly PAC learns a concept class \mathcal{F} if $\forall f \in \mathcal{F}, \forall$ distribution $\mathcal{D}, \exists \gamma>\mathbf{0}, \forall \delta>$ 0 , with probability $\geq 1-\delta$, given examples $\in \mathcal{D}$ labelled according to f, WL outputs c such that

$$
\begin{equation*}
\underset{\mathcal{D}}{\operatorname{Pr}}[c(x) \neq f(x)] \leq \frac{\mathbf{1}}{\mathbf{2}}-\frac{\gamma}{\mathbf{2}} \tag{2}
\end{equation*}
$$

Definition 3 The term $\frac{\gamma}{2}$ is called the advantage of WL.
Remark Here, we assume that the concept class \mathcal{F} is Boolean, and so hypothesis c can be just doing slightly better than one of the two constant function. Also, note that WL must be able to output such c for all distributions, not just, say, the uniform distribution.

Theorem 1 If \mathcal{F} can be weakly learned, then \mathcal{F} can be strongly learned.

2 A Boosting Algorithm

In this section, we present an algorithm which boosts a weak learner to a strong one, hence proving the above theorem. There are several variants the algorithm, but they revolve around the same idea.

2.1 The Intuition

Suppose a weaker learner is only 51% accurate. We can first learn a weak hypothesis, filter away examples which are correctly classified, and then call the weak learner on the remaining 49% of the data. To increase the collective coverage of the hypotheses, we can repeat alternating between the filtering and the learning steps. A natural question is: Given an unseen example, which hypothesis shall we use? The basic idea of the boosting algorithm is to construct a filtering mechanism so that the majority vote of the collective hypotheses works out.

2.2 The Algorithm

Given a weak learner WL, a distribution \mathcal{D}, a concept f, parameters ϵ and γ, the boosting algorithm Boost is the following: (We illustrate the case for the uniform distribution. Note that the algorithm can be easily modified to be distribution-free although we are not showing it here.)

Boost(WL, $\mathcal{D}, f, \epsilon, \gamma)$
initialize distribution $\mathcal{D}_{0}=\mathcal{D}=\mathcal{U}$
Use weak learner WL to generate weak hypothesis c_{1} such that $\operatorname{Pr}_{\mathcal{D}_{0}}\left[f(x)=c_{1}(x)\right] \geq \frac{1}{2}+\frac{\gamma}{2}$
Set current hypothesis $h=c_{1}$
for $i=1$ to T
(1) Construct \mathcal{D}_{i} with the filtering mechanism $\operatorname{Filter}\left(\mathcal{D}, h=\operatorname{maj}\left(c_{1}, \ldots, c_{i}\right), f, \epsilon, \gamma\right)$
(2) Run WL on \mathcal{D}_{i} to get weak hypothesis c_{i+1} such that $\operatorname{Pr}_{\mathcal{D}_{i}}\left[f(x)=c_{i+1}(x)\right] \geq \frac{1}{2}+\frac{\gamma}{2}$
(3) Update $h=\operatorname{maj}\left(c_{1}, \ldots, c_{i+1}\right)$
return $h=\operatorname{maj}\left(c_{1}, \ldots, c_{T+1}\right)$ such that $\operatorname{Pr}_{\mathcal{D}}[f(x)=h(x)] \geq 1-\epsilon$
$\operatorname{Filter}(\mathcal{D}, h, f, \epsilon, \gamma)$
do until we have the desired number of examples
Draw an example x from \mathcal{D}
if $h=\operatorname{maj}\left(c_{1}, \ldots, c_{i}\right)$ is wrong on x, then keep x
else if \# of c_{i} 's right $-\#$ of c_{i} 's wrong $>\frac{1}{\epsilon \gamma}$, then throw x away
else, say \# of c_{i} 's right - \# of c_{i} 's wrong $=\frac{\alpha}{\epsilon \gamma}$, then keep x with probability $1-\alpha$
return all retained examples \mathcal{D}_{i+1}
The algorithm assumes the weak learner never fails. (Recall that we can easily decrease the probability of failure.) Before giving the bound T on the maximum number of iterations needed, we first introduce some notations.

3 Preliminaries

Here are some notations and their properties:

1. $R_{c}(x)=\left\{\begin{array}{ll}+1 & \text { if } f(x)=c(x) \\ -1 & \text { o.w. }\end{array} \quad\right.$ gives +1 if (weak) hypothesis c is right on example x
2. $N_{i}(x)=\sum_{1 \leq j \leq i} R_{c_{j}}(x) \quad$ is the number of right c 's exceeding the wrong ones
3. $M_{i}(x)=\left\{\begin{array}{cl}1 & \text { if } N_{i}(x) \leq 0 \\ 0 & \text { if } N_{i}(x) \geq \frac{1}{\epsilon \gamma} \\ 1-\epsilon \gamma N_{i}(x) & \text { o.w. }\end{array}\right.$
is a "measure" which upper bounds the error of hypothesis $h=\operatorname{maj}\left(c_{1}, \ldots, c_{i}\right)$ on example x.
4. $\mu(M)=\frac{1}{2^{n}} \sum_{x} M(x) \geq \operatorname{error}(h) \geq \epsilon \quad$ is the "mean" of M. It upper bounds the error of h and therefore also ϵ. (We actually estimate $\mu(M)$ by sampling in each iteration and stop if $\mu(M)<\epsilon$.)
5. $|M|=\sum_{x} M(x)=2^{n} \mu(M) \quad$ is the total "mass" of all examples according to "measure" M.
6. $D_{M}(x)=\frac{M(x)}{|M|} \quad$ is a distribution over x given M. (Note that we obtain \mathcal{D}_{i} with c_{i}, and so $\left.D_{M_{i}}=\mathcal{D}_{i}.\right)$
7. $\operatorname{Adv}_{c}(M)=\sum_{x} R_{c}(x) M(x) \quad$ is the advantage of c on M. (Random guessing gives 0 .)
8. $\operatorname{Adv}_{c}(M) \geq \gamma|M|$ iff $\operatorname{Pr}_{x \in D_{M}}[c(x)=f(x)] \geq \frac{1}{2}+\frac{\gamma}{2}$
9. If $\operatorname{Pr}_{x \in D_{M}}[c(x)=f(x)] \geq \frac{1}{2}+\frac{\gamma}{2}$ and $\mu(M) \geq \epsilon$, then $\operatorname{Adv}_{c}(M) \geq_{(8)} \gamma|M|=\gamma 2^{n} \mu(M) \geq{ }_{(4)} \gamma 2^{n} \epsilon$

4 Convergence Proof

Claim $2 A_{i}(x)=\sum_{0 \leq j \leq i-1} R_{c_{j+1}}(x) M_{j}(x)<\frac{1}{\epsilon \gamma}+0.5 \epsilon \gamma i$
Before proving this claim, we first use it to bound the maximum number of iterations required by the boosting algorithm. Hence, if a concept can be weakly PAC learned, then it can be ("strongly") PAC learned.

Claim 3 The maximum number of iterations required by the boosting algorithm is $\leq \frac{2}{\gamma^{2} \epsilon^{2}}$.
Proof We prove the claim by showing that assuming the algorithm does not stop after $\frac{2}{\gamma^{2} \epsilon^{2}}$ iterations leads to a contradiction. Suppose the algorithm continues to run after iteration $i_{0}>\frac{2}{(\epsilon \gamma)^{2}}$ (i.e. $\mu\left(M_{i}\right) \geq$ ϵ), a lower bound can be derived as follows:

$$
\begin{align*}
\sum_{x} A_{i_{0}+1} & =\sum_{x} \sum_{0 \leq j \leq i_{0}} R_{c_{j+1}}(x) M_{j}(x) \tag{3}\\
& =\sum_{0 \leq j \leq i_{0}} \underbrace{\sum_{x} R_{c_{j+1}}(x) M_{j}(x)}_{A d v_{c j+1}\left(M_{j}(x)\right)} \tag{4}\\
& \left.\geq\left(i_{0}+1\right) \gamma 2^{n} \epsilon \quad \text { (using property } 9 \text { in section } 3\right) \tag{5}
\end{align*}
$$

Using Claim 2 leads to an upper bound:

$$
\begin{align*}
\sum_{x} A_{i_{0}+1} & <\sum_{x}\left(\frac{1}{\epsilon \gamma}+0.5 \epsilon \gamma i_{0}\right) \tag{6}\\
& =2^{n}\left(\frac{1}{\epsilon \gamma}+0.5 \epsilon \gamma i_{0}\right) \tag{7}
\end{align*}
$$

Using both bounds, $\left(i_{0}+1\right) \gamma 2^{n} \epsilon \leq \sum_{x} A_{i_{0}+1}(x)<2^{n}\left(\frac{1}{\epsilon \gamma}+0.5 \epsilon \gamma i_{0}\right) \Rightarrow i_{0}<\frac{2}{\gamma^{2} \epsilon^{2}}$, we arrive at a contradiction. So, the algorithm must run for $\frac{2}{\gamma^{2} \epsilon^{2}}$ iterations or less.

Fact 4 (The Elevator Argument) If one rides an elevator from the ground floor, then one ascends from the k-th to the $(k+1)$-th floor at most 1 more time than one descends from the $(k+1)$-th to the k-th floor. (Analogous argument holds when traveling from the ground floor to basements.)

Proof of Claim 2: The process of adding each term of $N_{i}(x)$ corresponds to an elevator ride with $R_{c_{j}}(x)$ dictating the direction and partial sum $N_{j}(x)$ denoting the current level. The plan is to first match pairs of $R_{c j+1}(x) M_{j}(x)$ terms and obtain an upper bound of their sum using properties of function $M_{j}(x)$. As for the unmatched pairs, we can bound the number of them (using the Elevator Argument) and also their sums. And so, an upper bound for $A_{i}(x)$ can be obtained.

Matched Pairs

For each $k \geq 0$,
match j such that $N_{j}(x)=k$ and $N_{j+1}(x)=k+1$
with j^{\prime} such that $N_{j^{\prime}}(x)=k+1$ and $N_{j^{\prime}+1}(x)=k$
For each matched pair of terms corresponding to indices $a=j, b=j^{\prime}$, the sum is
$\underbrace{R_{c_{a+1}}(x)}_{+1} \underbrace{M_{a}(x)}_{N_{a}(x)=k}+\underbrace{R_{c_{b+1}}(x)}_{-1} \underbrace{M_{b}(x)}_{N_{b}(x)=k+1}=M_{a}(x)-M_{b}(x)$.

```
If \(0 \leq k \leq \frac{1}{\epsilon \gamma}\) or \(0 \leq k+1 \leq \frac{1}{\epsilon \gamma}\), then
    \(M_{a}(x)-M_{b}(x) \leq \epsilon \gamma\) (because \(\frac{M_{b}(x)-M_{a}(x)}{k+1-k}\) is the slope of \(M_{i}(x)\) which is \(\geq-\epsilon \gamma\) ),
else
    \(M_{a}(x)-M_{b}(x)=0\).
```

We can arrive at the same result for $k<0$. Therefore, the total contribution of matched pairs is $\leq 0.5 \in \gamma i$ (because $A_{i}(x)$ has i terms).

Unmatched Terms Notice that unmatched terms are in the "same direction", i.e. all $R_{c_{j}}(x)$'s are either negative or positive. Suppose all $R_{c_{j}}(x)$'s are negative (i.e. -1), then their contribution to the sum is negative (because each term becomes $-M_{j}(x) \leq 0$). So they do not loosen the upper bound we already derived from matched pairs.

Suppose all $R_{c_{j}}(x)$'s are positive (i.e. +1). Then $N_{j}(x) \geq 0$, and so each term is $M_{j}(x)=1-\epsilon \gamma N_{j}(x)$ if $N_{j}(x) \in\left[0, \frac{1}{\epsilon \gamma}\right]$ and 0 otherwise. The Elevator Lemma tells us that there is at most one unmatched $N_{j}(x)$ for each integer value in the interval $\left[0, \frac{1}{\epsilon \gamma}\right]$, and so the total contribution of them (sum of a arithmetic series from 0 to 1 with $\frac{1}{\epsilon \gamma}$ terms) is $\leq \frac{1}{2 \epsilon \gamma}<\frac{1}{\epsilon \gamma}$

Summing up the total contribution from both matched and unmatched terms gives $A_{i}(x)<\frac{1}{\epsilon \gamma}+$ $0.5 \epsilon \gamma i$.

