
6.895 Randomness and Computation March 31, 2008

Lecture 14

Lecturer: Ronitt Rubinfeld Scribe: Tahira Naseem

1 Last Time

Last time we defined the following complexity classes.

Definition 1 RP(randomized polynomial time) is the class of languages L for which there exists a
probabilistic polynomial-time algorithm A such that

x ∈ L ⇒ Pr[A(x) accepts] ≥
1

2
x /∈ L ⇒ Pr[A(x) accepts] = 0

Definition 2 BPP(bounded-error probabilistic polynomial time) is the class of languages L for which
there exists a probabilistic polynomial-time algorithm A such that

x ∈ L ⇒ Pr[A(x) accepts] ≥
2

3

x /∈ L ⇒ Pr[A(x) accepts] ≤
1

3

2 This Time: Derandomization

In this lecture we discuss how to derandomize algorithms. We will see a brute force algorithm (enumera-
tion) for derandomization. We will also see that some random algorithms do not need true randomness.
Specifically, we will see an example where only pairwise random bits are needed. Next, we will see how
we can generate pairwise random values and how this conservation on the amount of randomness can
reduce the time needed for derandomization. In the end we discuss a two-point sampling algorithm that
also reduces the number of random bits needed but it worsens the running time.

3 Derandomization via enumeration

Idea:

In general, a random algorithm picks values from a domain randomly and then based on those random
samples, approximates a solution. The idea of this algorithm is that rather than picking random samples
from space, explore the whole space.

Algorithm

Given a BPPalgorithm A, create a deterministic algorithm B as follows:
try all random strings on A
count how many accept
return the answer corresponding to the fraction of random strings on which A accepts

(the exact interpretation of this count depends
on the algorithm but it will give a deterministic answer)

Analysis

1

Runtime of B :
r(n) = number of random bits used by A
TA(n) = upper bound on runtime of A

TB(n) ≤ TA(n)2r(n)

Corollary 3 BPP ≤ EXPTIME =
⋃

c DTIME(2nc

)

This means randomness does not help in terms of computation ability.

In some randomized algorithms, we do not need truly random bits. Suppose an algorithm A needs
m random bits then the search space for derandomizing the algorithm would be of size 2m. Now if we
know that the algorithm needs these bits to be only weakly random (we will soon discuss what weekly
random may mean) and we know some mechanism of generating these weakly random bits using l truly
random bits, where l ≪ m, then this will greatly reduce the search space while derandomizing. Figure
1 shows a graphical form of this concept.

Figure 1: conserving the amount of randomness

Now we will see an example of an algorithm that does not need perfect randomness.

4 MAXCUT: A randomized algorithm that does not need true

randomization

Given: A graph G(V, E) where |V | = n

Output: Partition V into H + T such that, the size of CUT = {(u, v)|u ∈ H, v ∈ T } is maximized.

Algorithm:

flip n coins r1, r2.....rn

for each ri

if ri is Head
put vertex i in H

else
put vertex i in T

Analysis:

2

E[CUT size] = E

∑

(u,v)

1(u,v)

(where 1(u,v) = 1 if edge (u, v) is cut by the CUT and 0 otherwise)

=
∑

(u,v)

Pr[(u, v)crosses the CUT]

=
∑

(u,v)

Pr[(u ∈ H and v ∈ T) or (v ∈ H and u ∈ T)]

=
∑

(u,v)

(Pr(u ∈ H ∩ v ∈ T) + Pr(v ∈ H ∩ u ∈ T))

=
∑

(u,v)

(Pr(u ∈ H) · Pr(v ∈ T) + Pr(v ∈ H) · Pr(u ∈ T))

(u and v are assigned independently to their corresponding sets with probability
1

2
)

=
∑

(u,v)

1

2
=
|E|

2

The only independence assumption needed to make this analysis work is that in every pair of nodes,
both nodes are assigned independently uniformly to any side of the cut. Thus, this algorithm needs only
pairwise independence.

5 Pairwise Independent Random Variables

Pick n values X1, X2, . . . , Xn where each Xi ∈ T such that |T | = t

Definition 4 X1, . . . , Xn are independent if for all b1, . . . , bn ∈ T , Pr[X1 . . .Xn = b1 . . . bn] = 1
tn .

Definition 5 X1, . . . , Xn are pairwise independent if for all i 6= j, and for all b1, b2 ∈ T , Pr[Xi, Xj =
b1, b2] = 1

t2
.

We will use the short form p.i. for “pairwise independent” from this point on wards.

Definition 6 X1, . . . , Xn are k-wise independent if for all distinct i1, . . . , ik, and all b1, . . . , bk ∈ T
Pr[Xi1 , . . . , Xik

= b1, . . . , bk] = 1
tk .

Informally, a set of n values is k-wise independent if any size-k subset has a uniform distribution over
all k-size sets. To achieve the uniform distribution over subsets of variables we do not need the uniform
distribution over whole vectors of variables. Consider the following example of three bit vectors. In the
second column, if we consider any two bit position in all strings, we will get a random distribution over
two bits.

independent pairwise independent
000 000
001 011
010 101
011 110
100
101
110
111

3

If the sample space is small we need lesser number of bits to generate a sample. To pick a number
randomly from among 4 numbers we need two random bits, to pick an number randomly from among 8
numbers we need three bits.

Next, we will see how many truly random bits are needed to get n p.i. bits.

5.1 Generating pairwise independent bits

Algorithm

Choose k truly random bits b1....bk

∀S ⊆ [k] such that S 6= φ
set Cs =

⊕

i∈S bi

output all Cs

Claim: for S 6= T , CS and CT are p.i.

In the above algorithm, k truly random bits give 2k− 1 p.i. random bits. This means we only need log n
bits to get n pairwise independent bits. Hence, in the MAXCUT algorithm, we can simulate n coin flips
using only log n random bits and generating n p.i. random bits. To derandomize the algorithm, we need
to search a space of size 2log n = n.

5.2 Generating pairwise independent numbers

Now we will see an algorithm to generate p.i. numbers in the range 0, . . . , q − 1, where q is a prime
number.

Algorithm

Pick a, b ∈ Zq randomly
∀i ∈ [0....q − 1]

ri ← ai + b mod q
output ri’s

This algorithm needs two randomly chosen numbers from among q numbers. Which requires 2 log q
random bits. Before further analyzing this algorithm we will define the concept of pairwise independent
family of functions.

Definition 7 H = {hi : [N] → [M]} is pairwise independent family of functions if ∀x 6= y ∈ [N],
∀a, b ∈ [M], Prh∈H[h(x) = a and h(y) = b] = 1

M2 .

Now let us see why the above algorithm gives p.i. values. We can represent the mapping of any pair
of numbers, using matrices:

[

x 1
y 1

] [

a
b

]

=

[

w
z

]

.

If x 6= y then det

[

x 1
y 1

]

6= 0 and for any values of x 6= y, w, z ∈ Zq there is only one pair (a, b) that

can map (x, y) to (w, z). (We have seen this trick before for proving that every set has a large subset
that is sum free.) Since there are q2 pairs (a, b) and we choose randomly from them Pra,b[ha,b(x) =
w

∧

ha,b(y) = z] = 1
q2 , which implies that the set H = {ha,b|Zq → Zq}, where ha,b = ai + b mod q, is a

p.i. family of function.
To fully derandomize an algorithm that uses q p.i. numbers, we only have to go through 22 log q = q2

possibilities. Note that a p.i. family of function can be useful in this scenario only if a random choice
ha,b ∈ H is computable in time poly(log N, log M) where N and M are the sizes of the domain and range.

4

6 Two Point Sampling

Given an algorithm A such that:

x ∈ L ⇒ Pr
R

[A(x, R) = 0] <
1

2
,

x /∈ L ⇒ Pr
R

[A(x, R) = 0] = 1,

an R such that A(x, R) = 1 is a witness if x ∈ L.

To reduce the error of this algorithm:

repeat k times,
output 1 if any A(x, R) = 1,
output 0, otherwise.

Let us call this new algorithm A′. It is such that
if x ∈ L, Pr[A′(x, R′) = 0] ≤ 1

2k ,
if x /∈ L, Pr[A′(x, R′) = 0] = 1.

The number of random bits needed by A′ is O(|R| · k). This is because we need to generate |R| bits
k times. If we generate only two values of size |R|, and generate p.i. values from these two for use in
other iterations, we will get a “two point sampling algorithm”.

Two point sampling algorithm

Pick a, b randomly from Z2|R|

Construct r1, . . . , rk, where
ri = a · ci + b, where each ci is a different fixed element of Z2|R|

Compute A(x, r1),A(x, r2), . . . ,A(x, rk).
If there is an i such that A(x, ri) = 1

output 1
else

output 0

Analysis

If x /∈ L, the above algorithm never misclassifies.
If x ∈ L,

then it misclassifies if it never sees a witness i.e. A(x, ri) = 0, for all i.

Let Y =
∑k

i=0A(x, ri), E[Y] ≥ k
2 .

Pr[never sees a witness] = Pr[Y = 0] ≤ c
k

= O(1
k
).

The last step can be obtained by using the Chebyshev inequality, and applying it to pairwise independent
r.v.’s. We have Pr[|X− µ| ≥ ǫ] ≤ 1

kǫ2
, where Xi is the indicator if ri is a witness, X = 1

k
ΣXi, and µ =

E[X]. For X ∈ L, we have µ = E[Y
k

] = E[X] ≥ 1
2 . Hence, Pr[Y = 0] ≤ Pr[|Y

k
− µ| ≥ µ] ≤ 1

kµ2 = O(1
k
).

This holds because |Y
k
− µ| ≥ µ includes the case where Y = 0.

Thus, we can get 1
k

error bound using O(log k) random bits. If we want our original 1
2k error bound,

we will need log 2k = k random bits and 2k iteration. So we will still be saving on random bits, but the
running time will be worse.

5

