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Lecture 15
Lecturer: Ronitt Rubinfeld Scribe: Jeremy Fineman

1 Random Walks

1.1 Markov Chains

Let Ω be a set of states (for the purposes of this class, Ω is always finite, so we can think of it as nodes
in a graph). A Markov chain is a sequence of random variables X0, X1, . . . , Xt ∈ Ω that obey the
“Markovian property”, that is,

Pr[Xt+1 = y|X0 = x0, X1 = x1, . . . , Xt = xt] = Pr[Xt+1 = y|Xt = xt].

One can think of Xi’s as states visited in consecutive steps. The Markovian property essentially says
that the transitions between states are historyless—the probability of transitioning to the next state
depends only on the current state, not on any of the other previous states.

Without loss of generality, we also assume that transitions are independent of time. More formally,
there exists some P (x, y) such that

P (x, y) = Pr[Xt+1 = y|Xt = x] ,

for all t. This assumption is without loss of generality because we can simply create a new set of states
Ω× [t], having a different set of states associated with each timestep.

The transition probabilities P (x, y) can be represented either by a graph with probabilities on edges,
or by a transition matrix P . For example, both of the following represent the same transitions.
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1 2 3
1 1/2 1/8 3/8
2 1/4 1/2 1/4
3 1/3 1/3 1/3

1.2 Random walk on a graph

A random walk on a graph G = (V,E) is a special case of a Markov chain. Here, we pick the next state
uniformly from among the neighbors of the current state. For example, if we have the following graph
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then the transition probabilities are given by
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1 2 3
1 1/2 1/2 0
2 0 0 1
3 1/2 1/2 0
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For a random walk on a graph, P (i, j) is easy to compute. Let degout(i) denote the number of
outedges from a node i. Then we have

P (i, j) =

{
1

degout(i)
if (i, j) ∈ E

0 otherwise .

We note that ∀i,
∑

j P (i, j) = 1, which is good because rows of P specify a probability of transition.

1.3 The t-step distribution

We call the initial probability distribution over states the initial distribution , denoted by Π0. The
t-step distribution is the distribution after taking t steps from the starting distribution, given by
Πt = Π0P t, where P t means the transition matrix P raised to the tth power. To see that this formulation
is correct, we show that P t(x, y) is the probability of getting from x to y in t steps. This fact is easily
exhibited by considering a t-step path from x to y as first taking a single to step to some vertex z, and
then taking t− 1 steps to y. Thus, we have

P t(x, y) =

{
P (x, y) if t = 1∑

z P (x, z)P t−1(z, y) for t > 1 .

In the case for t > 1, it is clear that P t is just the matrix product of P and P t−1.

1.4 Nice properties for Markov chains

Let’s define some properties for finite Markov chains. Aside from the “stochastic” property, there exist
Markov chains without these properties. However, possessing some of these qualities allows us to say
more about a random walk.

• stochastic (always true): rows in the transition matrix sum to 1.

• doubly stochastic: rows and columns sum to 1 in the transition matrix. An example of a doubly
stochastic graph is one where the degin(i) = degout(i) = d, for all nodes i ∈ V . For undirected
graphs, a d-regular graph is doubly stochastic.

• aperiodic: ∀x ∈ Ω.gcd{t : P t(x, x) > 0} = 1, i.e., the graph is not k-partite for any k. Usually
we’ll make a graph aperiodic by adding self loops to every node.

• irreducible (roughly means “strongly connected”): ∀x, y.∃t = t(x, y) such that P t(x, y) > 0. In
other words, for any pair of states, there is some positive probability of transitioning from the first
to the second in some number of steps.

• ergodic: ∃t0 such that ∀t > t0.∀x, y.P t(x, y) > 0. This property is strictly stronger than irre-
ducibility.

Ergodicity may seem like a strong property, and it may also seem difficult to prove. The following
theorem states that ergodicity is equivalent to irreducibility and aperiodicity.

Theorem 1 A finite Markov chain is ergodic if and only if it is aperiodic and irreducible.
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1.5 Stationary distributions

A stationary distribution is one such that ∀y ∈ Ω, we have

Π(y) =
∑

x

Π(x)P (x, y) ,

or equivalently ΠP = Π.
An important class of Markov chains is one in which a stationary distribution Π exists and is unique.

It turns out ergodicity is sufficient to guarantee a stationary distribution, as stated by the following
theorem.

Theorem 2 Every ergodic Markov chain has a stationary distribution that is unique.

Note that if a graph is bipartite, you may never arrive at a stationary distribution simply due to
oscillations between two sets. If a graph is unconnected, there may be many stationary distributions.

For an undirected graph that is connected and not bipartite, the stationary distribution is given by

Π(x) =
deg(x)
2 |E|

, (1)

where deg(x) is the degree of vertex x.

1.6 Cover time

First, we define the hitting time of i to j, denoted by hij , to be the expected time to reach state j
when starting from state i. For the special case of the hitting time of a state to itself, we have hii = 1

Π(i) .
We now define the cover time of a graph (we focus on undirected graphs) to be

Cu(G) = E[# steps to reach all nodes in G on walk that starts at u] , and
C(G) = max

u
Cu(G) .

Let’s consider some examples of cover times for simple graphs.

• C(K∗n) = Θ(n log n), where K∗n is the complete graph on n nodes that included self loops. The
bound follows from the coupon collector.

• C(Ln) = Θ(n2), where Ln is the line graph on n nodes.

• C(n-node lollipop) = Θ(n3), where an n-node lollipop is a Ln/2 with a K∗n/2 at one of the ends.
For intuition, the worst thing to do is start in the clique. Look at how many times you must hit
the start of the line before getting all the way to the end. Roughly speaking, it’s Θ(n2) times, and
you only escape the clique with probability 1/n.

It turns out that the Θ(n3) bound is the worst possible for cover time. We will prove something
stronger in a moment.

First, from here on, we assume, without loss of generality, that G is aperiodic. This assumption is
without loss of generality because for any walk in the loopy graph that covers the graph and follows a
self loop, we can remove the self loops from the walk only getting even shorter walks.

Before we can get to the main theorem, we need a definition and a lemma. We define the commute
time from i to j, denoted by Cij , to be the expected number of steps for a random walk starting at i
to hit j and then return to i. Thus, we have Cij = hij + hji by linearity of expectation.

Lemma 3 For all (u, v) ∈ E, we have Cuv ≤ 2m.
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Proof The key idea is to consider a walk of the form v → u v → u. We will show that

E[time between 2 visits to the directed edge (v, u)] ≤ 2m .

Note that this bounds Cuv. If we are at u (and we can assume that we just came from v), then after we
visit v → u again, we have commuted from u to v, and to u again.

Given G = (V,E), we construct a G′ = (V ′, E′) representing walks on edges of G. In particular, the
set V ′ is the set of directed edges in G, that is, for every undirected edge between x and y in E, we have
two edges (x, y) and (y, x) in V ′. The set of edges is E′ = {((u, v), (v, w))|(u, v), (v, w) ∈ V ′} ⊆ V ′2.

For example, consider the following graph G, transition matrix, and example of a walk.

1• b→
←c •2 A

1 2
1 1/2 1/2
2 1 0

1→ 1→ 2→ 1→ 1

We would transform the graph into G′, with the transition matrix and walk shown below.

a• //++ •b
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a b c
a 1/2 1/2 0
b 0 0 1
c 1/2 1/2 0

a→ b→ c→ a

G′ is called the “line graph” of the graph G. In G′ our goal is now to figure out what the hitting time
of h(u,v)(u,v) is.

Note that G′ is doubly stochastic because P ′(u,v)(v,w) = Pvw = 1
deg(v) if and only if (u, v), (v, w) ∈

E (once you get to node v, it doesn’t matter how you got there), and for all (v, w) ∈ E, we have∑
u:((u,v),(v,w))∈E′ P ′(u,v)(v,w) =

∑
u:(u,v)∈E

1
deg(v) = 1.

We apply the fact that G′ is doubly stochastic implies Π′ is uniform to get

Π′(v,u) =
1
|V ′|

=
1

2m

which implies that

h′(v,u)(v,u) =
1

Π′(v,u)

= 2m .

Therefore, the expected time between two visits of an edge in the same direction is at most 2m.

Now we prove the main theorem.

Theorem 4 For any graph G = (V,E), we have C(G) = O(mn) < O(n3).

Proof Pick any start vertex v0, and construct any spanning tree of G rooted at v0. Note that the
number of edges in T is exactly n− 1.

Let v0, v1, v2, . . . , v2n−2 be a depth-first traversal of the spanning tree T . Notice that v2n−2 = v0,
and each edge of T appears exactly twice, once in each direction.

We conclude that

C(G) ≤
2n−3∑
j=0

hvjvj+1

=
∑

(u,v)∈T

Cuv

≤
∑

(u,v)∈T

2m from Lemma 3

= O(nm) .
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We conclude by observing that this theorem does not hold for directed graphs. In particular, consider
the graph

• // • //:;89OO •BC@AOO // •JKHIOO // •RSPQMM

Here, the cover time C(G) = Θ(2n) which can be exhibited by starting at the leftmost node.
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