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1 Overview

1. Randomized Logspace and an algorithm for S,T-connectivity

2. Mixing Times

2 RL

RL is the class of problems which can be solved in randomized logspace. That is, there is a Turing
Machine M with access to a read-only input tape of length n, a write-only output tape, and a work tape
of size O(logn), which runs in polynomial time, such that

If 2 € L then Pr[M (z) accepts]
If ¢ L then Pr[M (x) accepts]
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Let’s look at the problem USTCONN, or undirected S-T connectivity: given an undirected graph G,
and two nodes S (source) and T (target), can we check if there is a path from S to T in randomized
logspace?

Theorem 1 USTCONN € RL

Proof The obvious algorithm turns out to work. Starting at node S, we take a random walk on G
for 3 % 8n3 steps. If we ever see T, output “Yes”, else no.

The only information that needs to be maintained is the name of the current node and how many
steps we have taken so far, so the algorithm is logspace. Last time we saw that 8n3 is an upper bound
for the cover time of a connected graph. This means it is also an upper bound on the expected time
to see all nodes in the connected component of S, and in particular to see T. Thus if T' is reachable
from S, then let X be a random variable for the length of a random walk until we see T. By Markov’s
inequality,

Prlaccept] = Pr[X > 3% 8n®] < Pr[X > 3 E[X]] < 1/3.

While if T is not reachable from S, then clearly
Pr[accept] = 0.
|

One interesting implication of this theorem is the existence of Universal Traversal Sequence for graphs.
Suppose there is a lexicographic order on the neighbors of any vertex in the graph; then we can specify
a random walk by a sequence {a;}, where at the i-th step we move to the a;-th neighbor of the current
vertex (modulo the degree of the current vertex). Now, if we pump up the probability of the above
algorithm, we see that for a fixed connected graph on n nodes, overwhelmingly many random walks of
some O(n?) length hit every vertex. Then, with an Adleman trick, there exist a particular (deterministic!)
walk which works for every connected graph on n nodes. Such a walk is called a Universal Traversal
Sequence. USTCONN is a great natural problem in RL C RP. As a first step in our derandomization
program, can we derandomize USTCONN? The answer is yes. So can we derandomize RL? The best
result is RL € L3/2, due to Saks & Zhou. And what about RP? Well, let’s finish looking at USTCONN
first.



3 Linear Algebra Review

Definition 2 A non-zero vector v is an eigenvector of a matrix A with corresponding eigenvalue A
if vA = Av. (Notice that for us, vectors go on the right.)

Definition 3 The Ly or Euclidean norm of a vector v = (vi,--+ ,vy,) is [v]a = /Dy V2.

We are used to seeing the Ly norm, |v|; = Y ., |v;], in the context of probability vectors, which must
have L; norm equal to 1.

Fact 4 LQ < L1 < \/’ELQ

The first inequality follows by algebra (3 |v;]> < (3 |vi])?)), and the second by Cauchy-Schwartz
(i) (21%) = (X [vil)?)-

Definition 5 The vectors vV, --- v are orthonormal if
(@) . ) — @, @ _ ) di=j
v\l =N g y?) =
; kook {O otherwise

Fact 6 The norm is linear; in particular, if v = a;b; for constants o; and orthonormal basis vectors

b, then ||v]|2 = /> a?

What does this have to do with connectivity? Let P be a transition matrix for a d-regular undirected
graph. Then an eigenvector with eigenvalue 1, normalized so that its L; norm is 1, is by definition
a stationary distribution for random walks on the graph. For example, if P is the transition for a d-
regular undirected graph, then recall that its stationary distribution is the uniform distribution: it has

eigenvector v = (%, e %) It will be convenient for us to normalize this to v’ = (%, e ﬁ), which
has Lo norm 1.
Theorem 7 Let P be a real symmetric matriz. Then it has an orthonormal eigenbasis vV ... (™),

If P is the transition matrix for a connected undirected graph, then the corresponding eigenvalues are
1=X > |>\2‘ > 2> |>\n‘

Fact 8 Assume P has eigenvectors v(P) - (™) with corresponding eigenvalues \1,--- , \p in nonin-
creasing order.

1. aP has the same eigenvectors vV, .- v™ with corresponding eigenvalues ady,-- - , \,.
2. P+ I has the same eigenvectors vV, --- v with corresponding eigenvalues Ay +1,--- , A\p + 1.
3. P* has the same eigenvectors vV, .- 0™ with corresponding eigenvalues DL L¥

4. If P is stochastic, then for all i, |A\;| < 1.
5

. If P is a transition matriz of an undirected graph, then w =" a;v®. The Ly norm |w| =3 a2.

Our trick for making graphs aperiodic — choosing with 1/2 probability to stay at the same node, and
with 1/2 probability to move to a random neighbor — corresponds to studying the matrix (P + I)/2.
The first two facts imply that this matrix has the same eigenvectors, and related eigenvalues: (\; +1)/2.



4 Mixing Times and Eigenstuff

Last time we saw that if a graph is aperiodic and connected, then there exists a unique stationary or
limiting distribution. How quickly does a random walk approach the stationary distribution?

Definition 9 The mixing time (parameterized by €) of Markov chain A is
T(e) = min{t : |7 — 7O AY||; < e},

where 7 is the stationary distribution and 7% is the initial distribution. We say A is rapidly mixing
if T(e) = poly(log |V|,log 1), where V is the set of possible states.

Question: What is the relationship between mixing time and cover time?

It is tempting to say that the mixing time must be greater than the cover time, but in fact it is
not necessary to be sure to have visited every node for the probabilities to have mixed. Consider the
complete graph: regardless of the starting distribution, after one step the distribution will be uniform.
Thus, we see that rapidly mixing graphs, which have the property that after visiting very few of the
nodes of the graph, the distribution will be very close to uniform, are not ipso facto impossible.

Theorem 10 Suppose P is the transition matriz for a d-reqular undirected ergodic graph. It has a
unique stationary distribution 7; let the initial distribution be mg. Then

||mo P! — 7]z < |Aof*

Proof By a previous theorem, P has an orthonormal basis of eigenvectors v(1) ... v(™ so we can
write mo = > Q;v;.

Pt = Z a Ao = a0 4+ Z RN
i—2

where the summation is disappearing, since the \; are strictly less than 1.

o Pt — anv®W|y =

i ai)\gv(i)
i=2

2

(see Fact 6)

<
< A5] - [I7ol2 (see Fact 6)
< X3 - ll7olh (see Fact 4)
< AL (Because g is a probability vector)

Next time we’ll see how to use random walks on rapidly mixing graphs to save randomness.



