evensidemargin=0.15in

6.842 Randomness and Computation

May 5, 2008

Lecture 23

Lecturer: Ronitt Rubinfeld Scribe: Alex Cornejo

Recall

Definition 1 Function $\varepsilon(n)$ is negligible if $\varepsilon(n) < \frac{1}{n^c} \ \forall c. \ Let \ f : \{\pm 1\} \to \mathbb{R}$ then $L_1(f) = \sum_S \left| \hat{f}(S) \right|$

Definition 2 $L \in BPP$ if there exists a probabilistic polynomial time algorithm A such that.

- $x \in L \Rightarrow \Pr[\mathcal{A}(x) \ accepts] \geq \frac{2}{3}$
- $x \notin L \Rightarrow \Pr[\mathcal{A}(x) \ accepts] \leq \frac{1}{3}$

Definition 3 Statistical distance

$$\Delta(X,Y) = \max_{T \subseteq S} |\Pr\left[x \in T\right] - \Pr\left[x \in S\right]|$$

Plan for Today

- Computational Indistinguishability
- Pseudorandom Generators (and derandomizing BPP)
- $\bullet \ \ Unpredictability$

n random bits. \longrightarrow PRG \longrightarrow m >> n random bits.

How should we measure the amount of randomness? L_1 distance?, Kolmogorov Complexity?, we will focus on computational indistinguishability.

Computational Indistinguishability

Definition 4 (Computational Indistinguishability (C.I.)) Let X_n and Y_n be sequences of random variables on $\{0,1\}^n$. We say the collections $\{X_n\}, \{Y_n\}$ are " $\varepsilon(n)$ -indistinguishable for time t(n)" if \forall probabilistic t(n)-time algorithm T, $|\Pr[T(X_n) = 1] - \Pr[T(Y_n) = 1]| \le \varepsilon(n), \forall n > n_0$ for some n_0 .

- If $\varepsilon(n)$ not specified then $\varepsilon(n) = \frac{1}{t(n)}$
- $X_n \stackrel{c}{\equiv} Y_n$ used for C.I.
- It is stronger to say that T is nonuniform, i.e. t(n) size circuits.
- N.C.I. used for non-uniform C.I., which means that it also holds when given $\leq t(n)$ bits of advice.

Definition 5 (Pseudorandom (P.R.)) X_n is pseudo-random if $X_n \stackrel{c}{=} U_n$.

Some nice theorems:

Theorem 6 If X_n , Y_n are N.C.I., then $\forall k = poly(n)$ X_n^k, Y_n^k are N.C.I. kindependent copies

Theorem 7 If X_n , Y_n are C.I., and X_n , Y_n are polytime sampleable then $X_n^k \stackrel{c}{=} Y_n^k$.

Definition 8 (PRG) [Blum-Micali-Yao] $G: \{0,1\}^{\ell(n)} \to \{0,1\}^n$ is a pseudo-random generator if $\ell(n) < n$ and $G(U_{\ell(n)}) \stackrel{c}{=} U_n$. G is "efficient" if computable in time poly(n).

Theorem 9 If there is an efficient PRG against the n with seed length $\ell(n)$ then $BPP \subseteq \bigcup_c DTIME(2^{\ell(n^c)}n^c)$.

In particular, using this theorem we get several interesting results by assuming different values of $\ell(n)$, for example:

Theorem 10 There exists a PRG against nonuniform time t(n) with seed length $O(\log t(n))$.

However, notice that the theorem does not say if it is efficiently computable, and therefore it does not imply that BPP = P.

Theorem 11 If there exists an efficient PRG then $P \neq NP$.

Proof We prove the contrapositive of the statement, that is if P = NP then no efficient PRG exists. Fix G and define T(x) as:

$$T(x) = \begin{cases} 1 & \text{if } \exists y \text{ such that } G(y) = x \\ 0 & \text{otherwise} \end{cases}$$

The test T(x) is such that $Pr_{x \in G(U_{\ell(n)})}[T(x) = 1] = 1$ and $Pr_{x \in U_n}[T(x) = 1] \le \frac{2^{\ell(n)}}{2^n} \le \frac{1}{2}$. Therefore T distinguishes distributions $G(U_{\ell(n)})$ and U_n with advantage $\ge \frac{1}{2}$.

If we assume that G is efficiently computable, notice that $T \in NP$ since we can guess y and verify G(y) = x in polynomial time since G. Therefore if P = NP then T is an efficiently computable test that distinguishes G from the uniform distribution, which means that G is not efficiently computable – a contradiction.

Next-bit Unpredicatble

Definition 12 Next-bit unpredictable Let $\mathbb{X} = (X_1, \dots, X_n)$ be a distribution on $\{0,1\}^n$. We say \mathbb{X} is next bit unpredictable if for every probabilistic polynomial time algorithm A there is a negligible function $\varepsilon(n)$ such that.

$$\Pr_{x.i.coins\ of\ P}[P(X_1,\ldots,X_n)=X_i] \le \frac{1}{2} + \varepsilon(n)$$

Notice that if X where the uniform distribution then $\varepsilon(n) = 0$.

Theorem 13 \mathbb{X} is pseudo-random if \mathbb{X} is next-bit unpredictable.

Proof

• If $\mathbb X$ is next-bit unpredictable $\Rightarrow \mathbb X$ is not pseudo-random.

Assume

$$\Pr_{x,i,\text{coins of P}} [P(X_1,...,X_n) = X_i] \ge \frac{1}{2} + \frac{1}{n^k}$$

In particular this means that $\exists i$ such that

$$\Pr_{x,\text{coins of P}}[P(X_1,...,X_n) = X_i] \ge \frac{1}{2} + \frac{1}{n^k}$$

We know define the statistical test $T(y_1, \ldots, y_n)$ as

$$T(y_1, ..., y_n) = \begin{cases} 0 & \text{if } P(y_1, ..., y_n) \neq y_i \\ 1 & \text{if } P(y_1, ..., y_n) = y_i \end{cases}$$

So the probability that T passes is $\Pr_{y \in \mathbb{X}}[T \text{ passes}] \geq \frac{1}{2} + \frac{1}{n^k}$, and $\Pr_{y \in U_n}[T \text{ passes}] = \frac{1}{2}$.

Therefore T distinguishes X and U_n with advantage $\geq \frac{1}{n^c}$, which means that X is not pseudorandom.

- If X is not pseudo-random \Rightarrow exists next-bit test. Not enough time to prove in this lecture, but here is the outline:
 - Use ${\bf hybrid}$ argument to construct next-bit predictor P

$$U = D_0 = U_1, \dots, U_n$$

$$D_1 = X_1, U_2, \dots, U_n$$

$$\vdots$$

$$X = D_n = X_1, \dots, X_n$$

– If distance between U and X is ε then there exists D_i, D_j with distance $\geq \varepsilon/n$.