6.895 Randomness and Computation May 12, 2008

Lecture 25
Lecturer: Ronitt Rubinfeld Scribe: Yoong Keok Lee

Today, we will prove that if one-way permutations exist then pseudorandom generators exist. After
that, we will look at some relationships between hardness and pseudorandomness. Before we begin, let
us review some materials from previous lectures.

1 Review

Definition 1 (Pseudorandom generator (PRG)) A function G : {0,1}/") — {0,1}F is a (t,e)-
PRG if

1. l(n) <n

2. G(Uyny) is e-computation indistinguishable to Uy according to t(n) non-uniform statistical test
Definition 2 (One-way function (OWF)) A function f is one-way if

1. for all input x, f(z) is computable in polynomial time

2. for all probabilistic polynomial time (ppt) algorithm A, Pr_ . .. OfA[A(f(ac) € [~ f(2))] is
negligible

Definition 3 (Hardcore bit (hcb)) A function b:{0,1}* — {0,1} is a hcb for OWF f, if for all ppt
algorithm A, there exists negligible € such that

1
LPr JAG@) = b)) < 5 el

Theorem 4 Efficient PRG ezists <= OWF exists

Definition 5 (One-way permutation (OWP)) OWPs are OWFs that are one-to-one and onto.
Theorem 6 Efficient PRG exists <= OWP exists

Claim 7 If function f :{0,1}" — {0,1}?" is a PRG, then f is a OWF

Proof See last lecture

2 If OWP exists, then PRG exists
Theorem 8 If OWP exists, then PRG exists

Let « be an input. If function b is a hcb for OWP f| then the concatenation of their output G(z) =
f(z)ob(z) is a PRG (proven in last lecture). In the remaining of this section, we will show that:

1. Not only can we obtain one bit of stretch, we can also get polynomially long bits of stretch with a
hcb.

2. If a OWP exists, we can construct a new OWP and its hcb.

Thus, if OWP exists, PRG exists. The result actually also holds for OWF although we will not see it
today.

Theorem 9 If function f : {0,1}' — {0,1} is a OWP with efficiently computable hcb b, then G(z) =
b(fm1(x)) ob(f"2(x))o...b(f(x)) o b(x) is a PRG for all n = poly(l).

Proof We will prove the theorem by contraction. Suppose G(z) is not a PRG, then G(X) is not
next-bit-unpredictable, i.e. 3 ppt P such that

Pr(P(b(f" V) (2),b(f" D (x),...,b(f" (@) = b(f "V (2))] -

1
zi 2 T nk

Let y = f*=9(z), i.e. f= D (2) = f(y). Because z €, Uy = y €, U; (since f is a permutation),

PHP(B((@), 01 ()) = b)) — 5 2
= PHA) = b)) -5 2

where algorithm A(z) does the following:
1. pick i €, {1,...,n}
2. output P(b(f'~2(2)),b(f*(2)), ... b(2))

Since b and f can be efficiently computed, A is computable in polynomial time, and so we arrive at
a contradiction that b is not hardcore. B

Theorem 10 (Goldreich Levin) If function f is a OWF, then function b(x,r) = (x,r) is a hcb for
OWF f'(x,r) = (f(x),r), where (x,r) denotes the inner product.

Sketch of Proof We will sketch the proof of a weaker statement — for OWP instead of OWF and also
over the boolean space, i.e. function f : {0,1}" — {0,1}". We will prove by contradiction. Assuming
b(x,r) is not a hcb, then 34 such that

Pr[A(f(x),7) = (z,r)] > % +e

Let h,(r) = A(f(z),r). Call an input z “good” if Pr,[h,(r) = (z,7)] > & + . We know that at
least § fraction of all inputs are “good”; otherwise it leads to a contradiction (by using conditional
probabilities): Pry [A(f(z),r) = (z,r)] < £-1+1-(3+ %) = 3 + . In other words, we know that
for a non-negligible fraction of inputs, function h,(r) is close to a linear boolean function (x,r). The
remaining plan is to obtain an inverse for the image of each of the “good” inputs. R

From boolean analysis, we obtain the following Fourier decomposition: ha(r) = >-gc(, h(S)xs(r).
Recall that h(S) = € = Pr,[h,(r) = xs(r)] = 14+ £. So for each image f(z), applying the Goldreich-
Levin-Kushilevitz-Mansour algorithm for learning heavy Fourier coefficients (we can query h, without
the need to know its inverse), we can get all bases xg(r) such that iL(S) > e. If « happens to be “good”,
we will be able to find its inverse by testing each candidate basis.

For a non-negligible fraction of the inputs, we can invert their image efficiently, therefore we arrive
at contradiction that f is not one-way. B

3 Hardness and Pseudorandomness
Definition 11 ((,a)-design) Si,...,Sn C [d] is a (I,a)-design if
1. Vi, |Si| =1
2. Vi# 4,808 <a

Remark We want m to be big, d small, and a small.

Theorem 12 (I, a)-design with a = ylogm,b = O(I>/a) constructible in time poly(m,d).

Proof Idea Greedy approach. B

Proof of [Weaker statement] Wlog let d = [2 for prime I. Let S; = {(j,¢;(j)|1 < ji} where ¢;(j) is a
univariate polynomial (mod) of deg < a. So, Vi, |S;| = {. And, Vi, j,|S; N S;| < a. Hence, m = [*"1 A

Definition 13 Function f : {0,1}} — {0,1} is (t, a)-average case hard if ¥ non-uniform algorithm A
time t(1)
Pr{A() = f(@)] < 1 - a(l)

T

for large enough 1.
Theorem 14 If function f is (t, % — €)-average case hard then function G(y) =yo f(y) is a (t,€)-PRG.
Theorem 15 (Nisan Wigderson) If
1. 3f : {0,1}! — {0,1} € E = DTIME(2°") such that f is (3 — ﬁ)—hard for non-uniform time t
2. 3(1,a)-design with Sy, ..., Sy C [d] where m = t(1)*/%a = % logt(l)

then
G:{0,1}" — {0,1}™

G(*T) = f($|81)f($|52) o fz sm)

is %—PRG against non-uniform time m (where x|s, denotes the indices of x given by set S;)

Proof Next lecture i

Corollary 16 IfE has (t(1), 3 — t(ll))—avemge case hard function f :{0,1}! — {0,1} for

t(l) =290 then P = BPP
— 2" then BPP C P
=10 then BPP = SUBEXP

