
6.895 Randomness and Computation May 12, 2008

Lecture 25
Lecturer: Ronitt Rubinfeld Scribe: Yoong Keok Lee

Today, we will prove that if one-way permutations exist then pseudorandom generators exist. After
that, we will look at some relationships between hardness and pseudorandomness. Before we begin, let
us review some materials from previous lectures.

1 Review

Definition 1 (Pseudorandom generator (PRG)) A function G : {0, 1}l(n) → {0, 1}k is a (t, ε)-
PRG if

1. l(n) < n

2. G(Ul(n)) is ε-computation indistinguishable to Un according to t(n) non-uniform statistical test

Definition 2 (One-way function (OWF)) A function f is one-way if

1. for all input x, f(x) is computable in polynomial time

2. for all probabilistic polynomial time (ppt) algorithm A, Pr
x,coins of A[A(f(x) ∈ f−1(f(x))] is

negligible

Definition 3 (Hardcore bit (hcb)) A function b : {0, 1}∗ → {0, 1} is a hcb for OWF f , if for all ppt
algorithm A, there exists negligible ε such that

Pr
x∈{0,1}l

[A(f(x)) = b(x)] ≤ 1
2

+ ε(l)

Theorem 4 Efficient PRG exists ⇐⇒ OWF exists

Definition 5 (One-way permutation (OWP)) OWPs are OWFs that are one-to-one and onto.

Theorem 6 Efficient PRG exists ⇐⇒ OWP exists

Claim 7 If function f : {0, 1}n → {0, 1}2n is a PRG, then f is a OWF

Proof See last lecture

2 If OWP exists, then PRG exists

Theorem 8 If OWP exists, then PRG exists

Let x be an input. If function b is a hcb for OWP f , then the concatenation of their output G(x) =
f(x) ◦ b(x) is a PRG (proven in last lecture). In the remaining of this section, we will show that:

1. Not only can we obtain one bit of stretch, we can also get polynomially long bits of stretch with a
hcb.

2. If a OWP exists, we can construct a new OWP and its hcb.

Thus, if OWP exists, PRG exists. The result actually also holds for OWF although we will not see it
today.
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Theorem 9 If function f : {0, 1}l → {0, 1}l is a OWP with efficiently computable hcb b, then G(x) =
b(fn−1(x)) ◦ b(fn−2(x)) ◦ . . . b(f(x)) ◦ b(x) is a PRG for all n = poly(l).

Proof We will prove the theorem by contraction. Suppose G(x) is not a PRG, then G(X) is not
next-bit-unpredictable, i.e. ∃ ppt P such that

Pr
x,i

[P (b(f (n−1)(x), b(f (n−2)(x), . . . , b(f (n−i+1)(x)) = b(f (n−1)(x))]− 1
2
≥ 1
nk

Let y = f (n−i)(x), i.e. f (n−i+1)(x) = f(y). Because x ∈r Ul ⇒ y ∈r Ul (since f is a permutation),

Pr
y,i

[P (b(f (i)(x), . . . , b(f(x)) = b(y)]− 1
2
≥ 1
nk

⇒ Pr
y

[A(f(y)) = b(y)]− 1
2
≥ 1
nk

where algorithm A(z) does the following:

1. pick i ∈r {1, . . . , n}

2. output P (b(f i−2(z)), b(f i−2(z)), . . . , b(z))

Since b and f can be efficiently computed, A is computable in polynomial time, and so we arrive at
a contradiction that b is not hardcore.

Theorem 10 (Goldreich Levin) If function f is a OWF, then function b(x, r) = 〈x, r〉 is a hcb for
OWF f ′(x, r) = (f(x), r), where 〈x, r〉 denotes the inner product.

Sketch of Proof We will sketch the proof of a weaker statement — for OWP instead of OWF and also
over the boolean space, i.e. function f : {0, 1}n → {0, 1}n. We will prove by contradiction. Assuming
b(x, r) is not a hcb, then ∃A such that

Pr
x,r

[A(f(x), r) = 〈x, r〉] > 1
2

+ ε

Let hx(r) ≡ A(f(x), r). Call an input x “good” if Prr[hx(r) = 〈x, r〉] > 1
2 + ε. We know that at

least ε
2 fraction of all inputs are “good”; otherwise it leads to a contradiction (by using conditional

probabilities): Prx,r[A(f(x), r) = 〈x, r〉] < ε
2 · 1 + 1 · ( 1

2 + ε
2 ) = 1

2 + ε. In other words, we know that
for a non-negligible fraction of inputs, function hx(r) is close to a linear boolean function 〈x, r〉. The
remaining plan is to obtain an inverse for the image of each of the “good” inputs.

From boolean analysis, we obtain the following Fourier decomposition: hx(r) =
∑
S⊆[n] ĥ(S)χS(r).

Recall that ĥ(S) = ε ⇒ Prr[hx(r) = χS(r)] = 1
2 + ε

2 . So for each image f(x), applying the Goldreich-
Levin-Kushilevitz-Mansour algorithm for learning heavy Fourier coefficients (we can query hx without
the need to know its inverse), we can get all bases χS(r) such that ĥ(S) ≥ ε. If x happens to be “good”,
we will be able to find its inverse by testing each candidate basis.

For a non-negligible fraction of the inputs, we can invert their image efficiently, therefore we arrive
at contradiction that f is not one-way.
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3 Hardness and Pseudorandomness

Definition 11 ((l, a)-design) S1, . . . , Sm ⊆ [d] is a (l, a)-design if

1. ∀i, |Si| = l

2. ∀i 6= j, |Si ∩ Sj | ≤ a

Remark We want m to be big, d small, and a small.

Theorem 12 ∃(l, a)-design with a = γ logm, b = O(l2/a) constructible in time poly(m, d).

Proof Idea Greedy approach.

Proof of [: Weaker statement] Wlog let d = l2 for prime l. Let Si = {(j, qi(j)|1 ≤ jl} where qi(j) is a
univariate polynomial (mod l) of deg ≤ a. So, ∀i, |Si| = l. And, ∀i, j, |Si ∩ Sj | ≤ a. Hence, m = la+1

Definition 13 Function f : {0, 1}l → {0, 1} is (t, α)-average case hard if ∀ non-uniform algorithm A
time t(l)

Pr
x

[A(x) = f(x)] < 1− α(l)

for large enough l.

Theorem 14 If function f is (t, 1
2 − ε)-average case hard then function G(y) = y ◦ f(y) is a (t, ε)-PRG.

Theorem 15 (Nisan Wigderson) If

1. ∃f : {0, 1}l → {0, 1} ∈ E = DTIME(2O(l)) such that f is ( 1
2 −

1
t(l) )-hard for non-uniform time t

2. ∃(l, a)-design with S1, . . . , Sm ⊆ [d] where m = t(l)1/3a = 1
3 log t(l)

then
G : {0, 1}d → {0, 1}m

G(x) = f(x|s1)f(x|s2) . . . f(x|sm
)

is 1
m -PRG against non-uniform time m (where x|si

denotes the indices of x given by set Si)

Proof Next lecture

Corollary 16 If E has (t(l), 1
2 −

1
t(l) )-average case hard function f : {0, 1}l → {0, 1} for

t(l) = 2Ω(l) then P = BPP

= 2l
Ω(1)

then BPP ⊆ P̃

= lω(1) then BPP = SUBEXP
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