
6.842 Randomness and Computation March 14, 2012

Lecture 11
Lecturer: Ronitt Rubinfeld Scribe: Ishaan Chugh

Today, we are going to continue Linearity Testing and introduce two very important tools

• Plancheral’s Theorem,

• Parseval’s Theorem

Using these tools we will finish our calculation of the rejection probability δ of the Linearity Test. We
will then proceed to see how we can save Randomness in Linearity Testing as well.

Linearity Testing Review

Recall from last lecture that for a function f : {0, 1}n → {0, 1}, its linearity test involved picking
randomly {x, y} ⊆R {±1}n. The test rejects if f(x)f(y)f(x ·y) 6= 1. Where x ·y is bitwise times between
x and y. That is each bit i of x and y is multiplied to give i’th bit of x · y.

Also recall that we defined the indicator random variable for the test failing as follows.

1− f(x)f(y)f(xy)

2
=

{
0 if the test passes,

1 if the test fails.

Since the rejection probability of the test δ is equal to the expected value of the indicator variable

δ = Ex,y
[

1− f(x)f(y)f(xy)

2

]
.

Also recall that we chose our basis functions to be character functions

χ
S
(x) =

∏
i∈S

xi.

We also proved a result which stated

f̂(S) = 1− 2 Pr[f(x) 6= χS(x)︸ ︷︷ ︸
dist(f,χS)

where dist(f, χ
S
) is the distance in the sense it tells us how far from linear f is. To calculate δ we

need two develop some tools which we will in the rest of the lecture.

Plancheral’s Theorem

This is the main tool we will be using.

Theorem 1 Plancheral’s Theorem Given f : {0, 1}n → R, then

〈f, g〉 ≡ Ex[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S)
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Proof

〈f, g〉 = 〈
∑
S

f̂χS ,
∑
T

ĝχT 〉

=
∑
S

∑
T

f̂(S)ĝ(T )〈χS χT 〉 (〈χS χT 〉 = 0 if S = T and 1 if S 6= T because of orthonormality)

=
∑
S⊆[n]

f̂(S)ĝ(S)

Corollary 2 Parseval’s Theorem: Given f : {0, 1}n → R, then

〈f, f〉 ≡ Ex[f2(x)] =
∑
S⊆[n]

f̂2(S)

This follows directly from Plancheral’s Theorem by replacing g with f .

Corollary 3 BOOLEAN Parseval’s Theorem: Given f : {0, 1}n → {±}, then

〈f, f〉 ≡ Ex[f2(x)] = Ex[1] = 1

This follows because f2 is always 1.

Some Applications

1.
Ex[f(x)] = Ex[f(x) · 1] =

∑
S

f̂(S)χ̂φ(S) = f̂(φ)

This immediately follows from Parseval’s Theorem by replacing g(x) with 1 which is χφ and using
the fact that χ̂φ(S) = 1 if S = χ else 0.

2.

Ex[χS(x)] =

{
1 if S = φ

0 Otherwise

GOAL TO SHOW relationship between δ and ”distance” of f from linearity, i.e. if ”distance” is
high so is rejection probability.

Return to Linearity Testing

Now that we have the right tools we can analyse our Linearity Testing algorithm and find the relationship
between the rejection probability δ and ε which was the measure of how far a function f is from being
linear. Recall a function f is ε-close to linear if there exists a linear function g such that

Pr[f(x) = g(x)] =
|{x|f(x) = g(x)}|

2n
≥ 1− ε.

Otherwise f is ε-far to linear.

2



Main Goal

Show δ ≥ minS Prx[f(x) 6= χS(x)]

Main Lemma

1− δ = Pr[f(x)f(y)f(x · y) = 1]

=
1

2
+

1

2

∑
S⊆[n]

f̂3(S)

Proof

δ = Ex,y
[

1− f(x)f(y)f(x · y)

2

]
1− δ = Exy[

1 + f(x)f(y)f(x · y)

2
]

=
1

2
+

1

2
Exy[f(x)f(y)f(x · y)]

Let us calculate Exy[f(x)f(y)f(x · y)] so that we can plug it in the expression above.

Exy

[
f(x)f(y)f(x · y)

]
= Exy

[∑
S

f̂(S)χS(x)
∑
T

f̂(T )χT (x)
∑
U

f̂(U)χU (x · y)

]
= Exy

[∑
S

∑
T

∑
U

f̂(S)f̂(T )f̂(U)χS(x)χT (x)χU (x · y)

]
=
∑
S

∑
T

∑
U

f̂(S)f̂(T )f̂(U)Exy

[
χS(x)χT (x)χU (x · y)

]
Note that in the above S,T and U are different only for convenience. It avoids variable confusion.

In the above expression we wish to evaluate Exy

[
χS(x)χT (x)χU (x ·y)

]
. We will show this expectation is

almost always 0 and plug this value in the expression above which will be then plugged in the expression
above that to finally prove the main lemma.

Exy

[
χS(x)χT (x)χU (x · y)

]
= Exy

[∏
i∈S

xi
∏
j∈T

xi
∏
k∈U

xuyu

]

= Exy

[ ∏
i∈S∆U

xi
∏

j∈T∆U

]
The x’s and y’s in S and T respectively ”square up” with x’s and y’s in U to evaluate to 1. So

Exy

[
χS(x)χT (x)χU (x · y)

]
= Exy

[ ∏
i∈S∆U

xi
∏

j∈T∆U

yj

]
= Ex[

∏
i∈S∆U

xi]Ey[
∏

j∈T∆U

yj ]

The last step follows because of the independence of x and y. We have

Ex[
∏

i∈S∆U

xi] =

{
1 if S ∆ U = φ

0 Otherwise
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Ex[
∏

j∈T∆U

yj ] =

{
1 if T ∆ U = φ

0 Otherwise

Thus,

Exy

[
χS(x)χT (x)χU (x · y)

]
=

{
1 if S=T=U

0 Otherwise

Putting this in

Exy

[
χS(x)χT (x)χU (x · y)

]
=
∑
S

∑
T

∑
U

f̂(S)f̂(T )f̂(U)Exy

[
χS(x)χT (x)χU (x · y)

]
We get

Exy

[
χS(x)χT (x)χU (x · y)

]
=
∑
S

f̂3(S)

]
Thus

1− δ =
1

2
+

1

2

∑
S⊆[n]

f̂3(S)

We will use this lemma to prove the following Theorem.

Theorem 4
if f : {±1}n → {±1} is ε− far from linear then δ ≥ ε

Proof

1− δ =
1

2
+

1

2

∑
S⊆[n]

f̂3(S)

1

2
− δ =

1

2

∑
S⊆[n]

f̂3(S)

1− 2δ =
∑
S⊆[n]

f̂3(S)

1− 2δ ≤ maxS f̂(S) ·
∑
S

f̂2(S)

≤ maxS f̂(S)

Pick T to maximise f̂(T ) i.e T is our closes linear function s.t. dist(f, χT ) = ε

1-2δ ≤ f̂(T ) = 1 - 2dist(f,χT ) = 1 - 2ε

Thus, δ ≥ ε
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Coppersmith’s Example

Note that the the result we proved only holds for Boolean functions. This is a counterexample due to
Don Coppersmith.

f(x) =


−1 if x = 2 mod 3

0 if x = 0 mod 3

1 if x = 1 mod 3

Table 1: Coppersmith’s Counterexample

x mod 3 y mod 3 f(x+y) f(x) + f(y)

-1 -1 1 -2
-1 0 -1 -1
-1 1 0 0
0 -1 -1 -1
0 0 0 0
0 1 1 1
1 -1 0 0
1 0 1 1
1 1 -1 2

δ = 2
9 . The closest linear function to f is g(x) = 0 ∀x ε = dist(f, 0) = 2

3 .
δ 6≥ ε

Saving Randomness in Linearity Testing

Graph Test

Given graph G with k nodes and edges E
Pick x1....xk εR{±1}n
∀(i, j)ε

test if f(xi)f(xj) = f(xi;xj)
Accept if it always passes.

Queries to f : K + |E|. K for each of the vertices(each of which represent a random n-length string
and |E| for each of the edges (which represent pairs of random strings)

Behaviour

If f is LINEAR , it ALWAYS PASSES.

If f is NOT LINEAR P[accept] ≤ 2−|E| + maxα |f̂α|.

Recall, that previously we proved a bound where P[accept] ≤ 1
2 + maxα

|f̂α|
2 .

We accept if
∏

(i,j)∈E)
1+f(xi)f(yj)f(xi·yj)

2 = 1
This is an indicator variable for the Test Passing. Thus, to calculate the probability of the test passing
we can calculate the expectation of the indicator random variable.

E

[∏
(i,j)∈E)

1+f(xi)f(yj)f(xi·yj)
2

]
= E

[∑
S⊆E

∏
(i,j)∈S f(xi)f(yj)f(xi·yj)

2|E|

]
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Lemma 5

∀S 6= φ E

[ ∏
(i,j)∈S

f(xi)f(xj)f(xi · xj)
]
≤ maxα|f̂α|

We will assume this lemma holds (prove it in the homework) and use it to find the bound on P[accept].

Proof

P [accept] = E

[∑
S 6=φ

∏
f(xi)f(xj)f(xi · xj)

2|E|
+

1

2|E|

]
=

1

2|E|
+

2|E|maxαf̂α
2|E|

=
1

2|E|
+maxαf̂α
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